1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
|
package netlink
import (
"errors"
"fmt"
"net"
"time"
"unsafe"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// XfrmStateAlgo represents the algorithm to use for the ipsec encryption.
type XfrmStateAlgo struct {
Name string
Key []byte
TruncateLen int // Auth only
ICVLen int // AEAD only
}
func (a XfrmStateAlgo) String() string {
base := fmt.Sprintf("{Name: %s, Key: 0x%x", a.Name, a.Key)
if a.TruncateLen != 0 {
base = fmt.Sprintf("%s, Truncate length: %d", base, a.TruncateLen)
}
if a.ICVLen != 0 {
base = fmt.Sprintf("%s, ICV length: %d", base, a.ICVLen)
}
return fmt.Sprintf("%s}", base)
}
// EncapType is an enum representing the optional packet encapsulation.
type EncapType uint8
const (
XFRM_ENCAP_ESPINUDP_NONIKE EncapType = iota + 1
XFRM_ENCAP_ESPINUDP
)
func (e EncapType) String() string {
switch e {
case XFRM_ENCAP_ESPINUDP_NONIKE:
return "espinudp-non-ike"
case XFRM_ENCAP_ESPINUDP:
return "espinudp"
}
return "unknown"
}
// XfrmStateEncap represents the encapsulation to use for the ipsec encryption.
type XfrmStateEncap struct {
Type EncapType
SrcPort int
DstPort int
OriginalAddress net.IP
}
func (e XfrmStateEncap) String() string {
return fmt.Sprintf("{Type: %s, Srcport: %d, DstPort: %d, OriginalAddress: %v}",
e.Type, e.SrcPort, e.DstPort, e.OriginalAddress)
}
// XfrmStateLimits represents the configured limits for the state.
type XfrmStateLimits struct {
ByteSoft uint64
ByteHard uint64
PacketSoft uint64
PacketHard uint64
TimeSoft uint64
TimeHard uint64
TimeUseSoft uint64
TimeUseHard uint64
}
// XfrmStateStats represents the current number of bytes/packets
// processed by this State, the State's installation and first use
// time and the replay window counters.
type XfrmStateStats struct {
ReplayWindow uint32
Replay uint32
Failed uint32
Bytes uint64
Packets uint64
AddTime uint64
UseTime uint64
}
// XfrmReplayState represents the sequence number states for
// "legacy" anti-replay mode.
type XfrmReplayState struct {
OSeq uint32
Seq uint32
BitMap uint32
}
func (r XfrmReplayState) String() string {
return fmt.Sprintf("{OSeq: 0x%x, Seq: 0x%x, BitMap: 0x%x}",
r.OSeq, r.Seq, r.BitMap)
}
// XfrmState represents the state of an ipsec policy. It optionally
// contains an XfrmStateAlgo for encryption and one for authentication.
type XfrmState struct {
Dst net.IP
Src net.IP
Proto Proto
Mode Mode
Spi int
Reqid int
ReplayWindow int
Limits XfrmStateLimits
Statistics XfrmStateStats
Mark *XfrmMark
OutputMark *XfrmMark
SADir SADir
Ifid int
Pcpunum *uint32
Auth *XfrmStateAlgo
Crypt *XfrmStateAlgo
Aead *XfrmStateAlgo
Encap *XfrmStateEncap
ESN bool
DontEncapDSCP bool
OSeqMayWrap bool
Replay *XfrmReplayState
Selector *XfrmPolicy
}
func (sa XfrmState) String() string {
return fmt.Sprintf("Dst: %v, Src: %v, Proto: %s, Mode: %s, SPI: 0x%x, ReqID: 0x%x, ReplayWindow: %d, Mark: %v, OutputMark: %v, SADir: %d, Ifid: %d, Pcpunum: %d, Auth: %v, Crypt: %v, Aead: %v, Encap: %v, ESN: %t, DontEncapDSCP: %t, OSeqMayWrap: %t, Replay: %v",
sa.Dst, sa.Src, sa.Proto, sa.Mode, sa.Spi, sa.Reqid, sa.ReplayWindow, sa.Mark, sa.OutputMark, sa.SADir, sa.Ifid, *sa.Pcpunum, sa.Auth, sa.Crypt, sa.Aead, sa.Encap, sa.ESN, sa.DontEncapDSCP, sa.OSeqMayWrap, sa.Replay)
}
func (sa XfrmState) Print(stats bool) string {
if !stats {
return sa.String()
}
at := time.Unix(int64(sa.Statistics.AddTime), 0).Format(time.UnixDate)
ut := "-"
if sa.Statistics.UseTime > 0 {
ut = time.Unix(int64(sa.Statistics.UseTime), 0).Format(time.UnixDate)
}
return fmt.Sprintf("%s, ByteSoft: %s, ByteHard: %s, PacketSoft: %s, PacketHard: %s, TimeSoft: %d, TimeHard: %d, TimeUseSoft: %d, TimeUseHard: %d, Bytes: %d, Packets: %d, "+
"AddTime: %s, UseTime: %s, ReplayWindow: %d, Replay: %d, Failed: %d",
sa.String(), printLimit(sa.Limits.ByteSoft), printLimit(sa.Limits.ByteHard), printLimit(sa.Limits.PacketSoft), printLimit(sa.Limits.PacketHard),
sa.Limits.TimeSoft, sa.Limits.TimeHard, sa.Limits.TimeUseSoft, sa.Limits.TimeUseHard, sa.Statistics.Bytes, sa.Statistics.Packets, at, ut,
sa.Statistics.ReplayWindow, sa.Statistics.Replay, sa.Statistics.Failed)
}
func printLimit(lmt uint64) string {
if lmt == ^uint64(0) {
return "(INF)"
}
return fmt.Sprintf("%d", lmt)
}
func writeStateAlgo(a *XfrmStateAlgo) []byte {
algo := nl.XfrmAlgo{
AlgKeyLen: uint32(len(a.Key) * 8),
AlgKey: a.Key,
}
end := len(a.Name)
if end > 64 {
end = 64
}
copy(algo.AlgName[:end], a.Name)
return algo.Serialize()
}
func writeStateAlgoAuth(a *XfrmStateAlgo) []byte {
algo := nl.XfrmAlgoAuth{
AlgKeyLen: uint32(len(a.Key) * 8),
AlgTruncLen: uint32(a.TruncateLen),
AlgKey: a.Key,
}
end := len(a.Name)
if end > 64 {
end = 64
}
copy(algo.AlgName[:end], a.Name)
return algo.Serialize()
}
func writeStateAlgoAead(a *XfrmStateAlgo) []byte {
algo := nl.XfrmAlgoAEAD{
AlgKeyLen: uint32(len(a.Key) * 8),
AlgICVLen: uint32(a.ICVLen),
AlgKey: a.Key,
}
end := len(a.Name)
if end > 64 {
end = 64
}
copy(algo.AlgName[:end], a.Name)
return algo.Serialize()
}
func writeMark(m *XfrmMark) []byte {
mark := &nl.XfrmMark{
Value: m.Value,
Mask: m.Mask,
}
if mark.Mask == 0 {
mark.Mask = ^uint32(0)
}
return mark.Serialize()
}
func writeReplayEsn(replayWindow int) []byte {
replayEsn := &nl.XfrmReplayStateEsn{
OSeq: 0,
Seq: 0,
OSeqHi: 0,
SeqHi: 0,
ReplayWindow: uint32(replayWindow),
}
// Linux stores the bitmap to identify the already received sequence packets in blocks of uint32 elements.
// Therefore bitmap length is the minimum number of uint32 elements needed. The following is a ceiling operation.
bytesPerElem := int(unsafe.Sizeof(replayEsn.BmpLen)) // Any uint32 variable is good for this
replayEsn.BmpLen = uint32((replayWindow + (bytesPerElem * 8) - 1) / (bytesPerElem * 8))
return replayEsn.Serialize()
}
func writeReplay(r *XfrmReplayState) []byte {
return (&nl.XfrmReplayState{
OSeq: r.OSeq,
Seq: r.Seq,
BitMap: r.BitMap,
}).Serialize()
}
// XfrmStateAdd will add an xfrm state to the system.
// Equivalent to: `ip xfrm state add $state`
func XfrmStateAdd(state *XfrmState) error {
return pkgHandle.XfrmStateAdd(state)
}
// XfrmStateAdd will add an xfrm state to the system.
// Equivalent to: `ip xfrm state add $state`
func (h *Handle) XfrmStateAdd(state *XfrmState) error {
return h.xfrmStateAddOrUpdate(state, nl.XFRM_MSG_NEWSA)
}
// XfrmStateAllocSpi will allocate an xfrm state in the system.
// Equivalent to: `ip xfrm state allocspi`
func XfrmStateAllocSpi(state *XfrmState) (*XfrmState, error) {
return pkgHandle.xfrmStateAllocSpi(state)
}
// XfrmStateUpdate will update an xfrm state to the system.
// Equivalent to: `ip xfrm state update $state`
func XfrmStateUpdate(state *XfrmState) error {
return pkgHandle.XfrmStateUpdate(state)
}
// XfrmStateUpdate will update an xfrm state to the system.
// Equivalent to: `ip xfrm state update $state`
func (h *Handle) XfrmStateUpdate(state *XfrmState) error {
return h.xfrmStateAddOrUpdate(state, nl.XFRM_MSG_UPDSA)
}
func (h *Handle) xfrmStateAddOrUpdate(state *XfrmState, nlProto int) error {
// A state with spi 0 can't be deleted so don't allow it to be set
if state.Spi == 0 {
return fmt.Errorf("Spi must be set when adding xfrm state")
}
req := h.newNetlinkRequest(nlProto, unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
msg := xfrmUsersaInfoFromXfrmState(state)
if state.ESN {
if state.ReplayWindow == 0 {
return fmt.Errorf("ESN flag set without ReplayWindow")
}
msg.Flags |= nl.XFRM_STATE_ESN
msg.ReplayWindow = 0
}
limitsToLft(state.Limits, &msg.Lft)
req.AddData(msg)
if state.Auth != nil {
out := nl.NewRtAttr(nl.XFRMA_ALG_AUTH_TRUNC, writeStateAlgoAuth(state.Auth))
req.AddData(out)
}
if state.Crypt != nil {
out := nl.NewRtAttr(nl.XFRMA_ALG_CRYPT, writeStateAlgo(state.Crypt))
req.AddData(out)
}
if state.Aead != nil {
out := nl.NewRtAttr(nl.XFRMA_ALG_AEAD, writeStateAlgoAead(state.Aead))
req.AddData(out)
}
if state.Encap != nil {
encapData := make([]byte, nl.SizeofXfrmEncapTmpl)
encap := nl.DeserializeXfrmEncapTmpl(encapData)
encap.EncapType = uint16(state.Encap.Type)
encap.EncapSport = nl.Swap16(uint16(state.Encap.SrcPort))
encap.EncapDport = nl.Swap16(uint16(state.Encap.DstPort))
encap.EncapOa.FromIP(state.Encap.OriginalAddress)
out := nl.NewRtAttr(nl.XFRMA_ENCAP, encapData)
req.AddData(out)
}
if state.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
req.AddData(out)
}
if state.ESN {
out := nl.NewRtAttr(nl.XFRMA_REPLAY_ESN_VAL, writeReplayEsn(state.ReplayWindow))
req.AddData(out)
}
if state.OutputMark != nil {
out := nl.NewRtAttr(nl.XFRMA_SET_MARK, nl.Uint32Attr(state.OutputMark.Value))
req.AddData(out)
if state.OutputMark.Mask != 0 {
out = nl.NewRtAttr(nl.XFRMA_SET_MARK_MASK, nl.Uint32Attr(state.OutputMark.Mask))
req.AddData(out)
}
}
if state.OSeqMayWrap || state.DontEncapDSCP {
var flags uint32
if state.DontEncapDSCP {
flags |= nl.XFRM_SA_XFLAG_DONT_ENCAP_DSCP
}
if state.OSeqMayWrap {
flags |= nl.XFRM_SA_XFLAG_OSEQ_MAY_WRAP
}
out := nl.NewRtAttr(nl.XFRMA_SA_EXTRA_FLAGS, nl.Uint32Attr(flags))
req.AddData(out)
}
if state.Replay != nil {
out := nl.NewRtAttr(nl.XFRMA_REPLAY_VAL, writeReplay(state.Replay))
req.AddData(out)
}
if state.SADir != 0 {
saDir := nl.NewRtAttr(nl.XFRMA_SA_DIR, nl.Uint8Attr(uint8(state.SADir)))
req.AddData(saDir)
}
if state.Ifid != 0 {
ifId := nl.NewRtAttr(nl.XFRMA_IF_ID, nl.Uint32Attr(uint32(state.Ifid)))
req.AddData(ifId)
}
if state.Pcpunum != nil {
pcpuNum := nl.NewRtAttr(nl.XFRMA_SA_PCPU, nl.Uint32Attr(uint32(*state.Pcpunum)))
req.AddData(pcpuNum)
}
_, err := req.Execute(unix.NETLINK_XFRM, 0)
return err
}
func (h *Handle) xfrmStateAllocSpi(state *XfrmState) (*XfrmState, error) {
req := h.newNetlinkRequest(nl.XFRM_MSG_ALLOCSPI,
unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
msg := &nl.XfrmUserSpiInfo{}
msg.XfrmUsersaInfo = *(xfrmUsersaInfoFromXfrmState(state))
// 1-255 is reserved by IANA for future use
msg.Min = 0x100
msg.Max = 0xffffffff
req.AddData(msg)
if state.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
req.AddData(out)
}
msgs, err := req.Execute(unix.NETLINK_XFRM, 0)
if err != nil {
return nil, err
}
return parseXfrmState(msgs[0], FAMILY_ALL)
}
// XfrmStateDel will delete an xfrm state from the system. Note that
// the Algos are ignored when matching the state to delete.
// Equivalent to: `ip xfrm state del $state`
func XfrmStateDel(state *XfrmState) error {
return pkgHandle.XfrmStateDel(state)
}
// XfrmStateDel will delete an xfrm state from the system. Note that
// the Algos are ignored when matching the state to delete.
// Equivalent to: `ip xfrm state del $state`
func (h *Handle) XfrmStateDel(state *XfrmState) error {
_, err := h.xfrmStateGetOrDelete(state, nl.XFRM_MSG_DELSA)
return err
}
// XfrmStateList gets a list of xfrm states in the system.
// Equivalent to: `ip [-4|-6] xfrm state show`.
// The list can be filtered by ip family.
//
// If the returned error is [ErrDumpInterrupted], results may be inconsistent
// or incomplete.
func XfrmStateList(family int) ([]XfrmState, error) {
return pkgHandle.XfrmStateList(family)
}
// XfrmStateList gets a list of xfrm states in the system.
// Equivalent to: `ip xfrm state show`.
// The list can be filtered by ip family.
//
// If the returned error is [ErrDumpInterrupted], results may be inconsistent
// or incomplete.
func (h *Handle) XfrmStateList(family int) ([]XfrmState, error) {
req := h.newNetlinkRequest(nl.XFRM_MSG_GETSA, unix.NLM_F_DUMP)
msgs, executeErr := req.Execute(unix.NETLINK_XFRM, nl.XFRM_MSG_NEWSA)
if executeErr != nil && !errors.Is(executeErr, ErrDumpInterrupted) {
return nil, executeErr
}
var res []XfrmState
for _, m := range msgs {
if state, err := parseXfrmState(m, family); err == nil {
res = append(res, *state)
} else if err == familyError {
continue
} else {
return nil, err
}
}
return res, executeErr
}
// XfrmStateGet gets the xfrm state described by the ID, if found.
// Equivalent to: `ip xfrm state get ID [ mark MARK [ mask MASK ] ]`.
// Only the fields which constitue the SA ID must be filled in:
// ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ]
// mark is optional
func XfrmStateGet(state *XfrmState) (*XfrmState, error) {
return pkgHandle.XfrmStateGet(state)
}
// XfrmStateGet gets the xfrm state described by the ID, if found.
// Equivalent to: `ip xfrm state get ID [ mark MARK [ mask MASK ] ]`.
// Only the fields which constitue the SA ID must be filled in:
// ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ]
// mark is optional
func (h *Handle) XfrmStateGet(state *XfrmState) (*XfrmState, error) {
return h.xfrmStateGetOrDelete(state, nl.XFRM_MSG_GETSA)
}
func (h *Handle) xfrmStateGetOrDelete(state *XfrmState, nlProto int) (*XfrmState, error) {
req := h.newNetlinkRequest(nlProto, unix.NLM_F_ACK)
msg := &nl.XfrmUsersaId{}
msg.Family = uint16(nl.GetIPFamily(state.Dst))
msg.Daddr.FromIP(state.Dst)
msg.Proto = uint8(state.Proto)
msg.Spi = nl.Swap32(uint32(state.Spi))
req.AddData(msg)
if state.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
req.AddData(out)
}
if state.Src != nil {
out := nl.NewRtAttr(nl.XFRMA_SRCADDR, state.Src.To16())
req.AddData(out)
}
if state.Ifid != 0 {
ifId := nl.NewRtAttr(nl.XFRMA_IF_ID, nl.Uint32Attr(uint32(state.Ifid)))
req.AddData(ifId)
}
if state.Pcpunum != nil {
pcpuNum := nl.NewRtAttr(nl.XFRMA_SA_PCPU, nl.Uint32Attr(uint32(*state.Pcpunum)))
req.AddData(pcpuNum)
}
resType := nl.XFRM_MSG_NEWSA
if nlProto == nl.XFRM_MSG_DELSA {
resType = 0
}
msgs, err := req.Execute(unix.NETLINK_XFRM, uint16(resType))
if err != nil {
return nil, err
}
if nlProto == nl.XFRM_MSG_DELSA {
return nil, nil
}
s, err := parseXfrmState(msgs[0], FAMILY_ALL)
if err != nil {
return nil, err
}
return s, nil
}
var familyError = fmt.Errorf("family error")
func xfrmStateFromXfrmUsersaInfo(msg *nl.XfrmUsersaInfo) *XfrmState {
var state XfrmState
state.Dst = msg.Id.Daddr.ToIP()
state.Src = msg.Saddr.ToIP()
state.Proto = Proto(msg.Id.Proto)
state.Mode = Mode(msg.Mode)
state.Spi = int(nl.Swap32(msg.Id.Spi))
state.Reqid = int(msg.Reqid)
state.ReplayWindow = int(msg.ReplayWindow)
lftToLimits(&msg.Lft, &state.Limits)
curToStats(&msg.Curlft, &msg.Stats, &state.Statistics)
state.Selector = &XfrmPolicy{
Dst: msg.Sel.Daddr.ToIPNet(msg.Sel.PrefixlenD, msg.Sel.Family),
Src: msg.Sel.Saddr.ToIPNet(msg.Sel.PrefixlenS, msg.Sel.Family),
Proto: Proto(msg.Sel.Proto),
DstPort: int(nl.Swap16(msg.Sel.Dport)),
SrcPort: int(nl.Swap16(msg.Sel.Sport)),
Ifindex: int(msg.Sel.Ifindex),
}
return &state
}
func parseXfrmState(m []byte, family int) (*XfrmState, error) {
msg := nl.DeserializeXfrmUsersaInfo(m)
// This is mainly for the state dump
if family != FAMILY_ALL && family != int(msg.Family) {
return nil, familyError
}
state := xfrmStateFromXfrmUsersaInfo(msg)
attrs, err := nl.ParseRouteAttr(m[nl.SizeofXfrmUsersaInfo:])
if err != nil {
return nil, err
}
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.XFRMA_ALG_AUTH, nl.XFRMA_ALG_CRYPT:
var resAlgo *XfrmStateAlgo
if attr.Attr.Type == nl.XFRMA_ALG_AUTH {
if state.Auth == nil {
state.Auth = new(XfrmStateAlgo)
}
resAlgo = state.Auth
} else {
state.Crypt = new(XfrmStateAlgo)
resAlgo = state.Crypt
}
algo := nl.DeserializeXfrmAlgo(attr.Value[:])
(*resAlgo).Name = nl.BytesToString(algo.AlgName[:])
(*resAlgo).Key = algo.AlgKey
case nl.XFRMA_ALG_AUTH_TRUNC:
if state.Auth == nil {
state.Auth = new(XfrmStateAlgo)
}
algo := nl.DeserializeXfrmAlgoAuth(attr.Value[:])
state.Auth.Name = nl.BytesToString(algo.AlgName[:])
state.Auth.Key = algo.AlgKey
state.Auth.TruncateLen = int(algo.AlgTruncLen)
case nl.XFRMA_ALG_AEAD:
state.Aead = new(XfrmStateAlgo)
algo := nl.DeserializeXfrmAlgoAEAD(attr.Value[:])
state.Aead.Name = nl.BytesToString(algo.AlgName[:])
state.Aead.Key = algo.AlgKey
state.Aead.ICVLen = int(algo.AlgICVLen)
case nl.XFRMA_ENCAP:
encap := nl.DeserializeXfrmEncapTmpl(attr.Value[:])
state.Encap = new(XfrmStateEncap)
state.Encap.Type = EncapType(encap.EncapType)
state.Encap.SrcPort = int(nl.Swap16(encap.EncapSport))
state.Encap.DstPort = int(nl.Swap16(encap.EncapDport))
state.Encap.OriginalAddress = encap.EncapOa.ToIP()
case nl.XFRMA_MARK:
mark := nl.DeserializeXfrmMark(attr.Value[:])
state.Mark = new(XfrmMark)
state.Mark.Value = mark.Value
state.Mark.Mask = mark.Mask
case nl.XFRMA_SA_EXTRA_FLAGS:
flags := native.Uint32(attr.Value)
if (flags & nl.XFRM_SA_XFLAG_DONT_ENCAP_DSCP) != 0 {
state.DontEncapDSCP = true
}
if (flags & nl.XFRM_SA_XFLAG_OSEQ_MAY_WRAP) != 0 {
state.OSeqMayWrap = true
}
case nl.XFRMA_SET_MARK:
if state.OutputMark == nil {
state.OutputMark = new(XfrmMark)
}
state.OutputMark.Value = native.Uint32(attr.Value)
case nl.XFRMA_SET_MARK_MASK:
if state.OutputMark == nil {
state.OutputMark = new(XfrmMark)
}
state.OutputMark.Mask = native.Uint32(attr.Value)
if state.OutputMark.Mask == 0xffffffff {
state.OutputMark.Mask = 0
}
case nl.XFRMA_SA_DIR:
state.SADir = SADir(attr.Value[0])
case nl.XFRMA_IF_ID:
state.Ifid = int(native.Uint32(attr.Value))
case nl.XFRMA_SA_PCPU:
pcpuNum := native.Uint32(attr.Value)
state.Pcpunum = &pcpuNum
case nl.XFRMA_REPLAY_VAL:
if state.Replay == nil {
state.Replay = new(XfrmReplayState)
}
replay := nl.DeserializeXfrmReplayState(attr.Value[:])
state.Replay.OSeq = replay.OSeq
state.Replay.Seq = replay.Seq
state.Replay.BitMap = replay.BitMap
}
}
return state, nil
}
// XfrmStateFlush will flush the xfrm state on the system.
// proto = 0 means any transformation protocols
// Equivalent to: `ip xfrm state flush [ proto XFRM-PROTO ]`
func XfrmStateFlush(proto Proto) error {
return pkgHandle.XfrmStateFlush(proto)
}
// XfrmStateFlush will flush the xfrm state on the system.
// proto = 0 means any transformation protocols
// Equivalent to: `ip xfrm state flush [ proto XFRM-PROTO ]`
func (h *Handle) XfrmStateFlush(proto Proto) error {
req := h.newNetlinkRequest(nl.XFRM_MSG_FLUSHSA, unix.NLM_F_ACK)
req.AddData(&nl.XfrmUsersaFlush{Proto: uint8(proto)})
_, err := req.Execute(unix.NETLINK_XFRM, 0)
return err
}
func limitsToLft(lmts XfrmStateLimits, lft *nl.XfrmLifetimeCfg) {
if lmts.ByteSoft != 0 {
lft.SoftByteLimit = lmts.ByteSoft
} else {
lft.SoftByteLimit = nl.XFRM_INF
}
if lmts.ByteHard != 0 {
lft.HardByteLimit = lmts.ByteHard
} else {
lft.HardByteLimit = nl.XFRM_INF
}
if lmts.PacketSoft != 0 {
lft.SoftPacketLimit = lmts.PacketSoft
} else {
lft.SoftPacketLimit = nl.XFRM_INF
}
if lmts.PacketHard != 0 {
lft.HardPacketLimit = lmts.PacketHard
} else {
lft.HardPacketLimit = nl.XFRM_INF
}
lft.SoftAddExpiresSeconds = lmts.TimeSoft
lft.HardAddExpiresSeconds = lmts.TimeHard
lft.SoftUseExpiresSeconds = lmts.TimeUseSoft
lft.HardUseExpiresSeconds = lmts.TimeUseHard
}
func lftToLimits(lft *nl.XfrmLifetimeCfg, lmts *XfrmStateLimits) {
*lmts = *(*XfrmStateLimits)(unsafe.Pointer(lft))
}
func curToStats(cur *nl.XfrmLifetimeCur, wstats *nl.XfrmStats, stats *XfrmStateStats) {
stats.Bytes = cur.Bytes
stats.Packets = cur.Packets
stats.AddTime = cur.AddTime
stats.UseTime = cur.UseTime
stats.ReplayWindow = wstats.ReplayWindow
stats.Replay = wstats.Replay
stats.Failed = wstats.IntegrityFailed
}
func xfrmUsersaInfoFromXfrmState(state *XfrmState) *nl.XfrmUsersaInfo {
msg := &nl.XfrmUsersaInfo{}
msg.Family = uint16(nl.GetIPFamily(state.Dst))
msg.Id.Daddr.FromIP(state.Dst)
msg.Saddr.FromIP(state.Src)
msg.Id.Proto = uint8(state.Proto)
msg.Mode = uint8(state.Mode)
msg.Id.Spi = nl.Swap32(uint32(state.Spi))
msg.Reqid = uint32(state.Reqid)
msg.ReplayWindow = uint8(state.ReplayWindow)
msg.Sel = nl.XfrmSelector{}
if state.Selector != nil {
selFromPolicy(&msg.Sel, state.Selector)
}
return msg
}
|