1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
/*
Package bloom provides data structures and methods for creating Bloom filters.
A Bloom filter is a representation of a set of _n_ items, where the main
requirement is to make membership queries; _i.e._, whether an item is a
member of a set.
A Bloom filter has two parameters: _m_, a maximum size (typically a reasonably large
multiple of the cardinality of the set to represent) and _k_, the number of hashing
functions on elements of the set. (The actual hashing functions are important, too,
but this is not a parameter for this implementation). A Bloom filter is backed by
a BitSet; a key is represented in the filter by setting the bits at each value of the
hashing functions (modulo _m_). Set membership is done by _testing_ whether the
bits at each value of the hashing functions (again, modulo _m_) are set. If so,
the item is in the set. If the item is actually in the set, a Bloom filter will
never fail (the true positive rate is 1.0); but it is susceptible to false
positives. The art is to choose _k_ and _m_ correctly.
In this implementation, the hashing functions used is murmurhash,
a non-cryptographic hashing function.
This implementation accepts keys for setting as testing as []byte. Thus, to
add a string item, "Love":
uint n = 1000
filter := bloom.New(20*n, 5) // load of 20, 5 keys
filter.Add([]byte("Love"))
Similarly, to test if "Love" is in bloom:
if filter.Test([]byte("Love"))
For numeric data, I recommend that you look into the binary/encoding library. But,
for example, to add a uint32 to the filter:
i := uint32(100)
n1 := make([]byte,4)
binary.BigEndian.PutUint32(n1,i)
f.Add(n1)
Finally, there is a method to estimate the false positive rate of a
Bloom filter with _m_ bits and _k_ hashing functions for a set of size _n_:
if bloom.EstimateFalsePositiveRate(20*n, 5, n) > 0.001 ...
You can use it to validate the computed m, k parameters:
m, k := bloom.EstimateParameters(n, fp)
ActualfpRate := bloom.EstimateFalsePositiveRate(m, k, n)
or
f := bloom.NewWithEstimates(n, fp)
ActualfpRate := bloom.EstimateFalsePositiveRate(f.m, f.k, n)
You would expect ActualfpRate to be close to the desired fp in these cases.
The EstimateFalsePositiveRate function creates a temporary Bloom filter. It is
also relatively expensive and only meant for validation.
*/
package bloom
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"math"
"github.com/bits-and-blooms/bitset"
)
// A BloomFilter is a representation of a set of _n_ items, where the main
// requirement is to make membership queries; _i.e._, whether an item is a
// member of a set.
type BloomFilter struct {
m uint
k uint
b *bitset.BitSet
}
func max(x, y uint) uint {
if x > y {
return x
}
return y
}
// New creates a new Bloom filter with _m_ bits and _k_ hashing functions
// We force _m_ and _k_ to be at least one to avoid panics.
func New(m uint, k uint) *BloomFilter {
return &BloomFilter{max(1, m), max(1, k), bitset.New(m)}
}
// From creates a new Bloom filter with len(_data_) * 64 bits and _k_ hashing
// functions. The data slice is not going to be reset.
func From(data []uint64, k uint) *BloomFilter {
m := uint(len(data) * 64)
return FromWithM(data, m, k)
}
// FromWithM creates a new Bloom filter with _m_ length, _k_ hashing functions.
// The data slice is not going to be reset.
func FromWithM(data []uint64, m, k uint) *BloomFilter {
return &BloomFilter{m, k, bitset.From(data)}
}
// baseHashes returns the four hash values of data that are used to create k
// hashes
func baseHashes(data []byte) [4]uint64 {
var d digest128 // murmur hashing
hash1, hash2, hash3, hash4 := d.sum256(data)
return [4]uint64{
hash1, hash2, hash3, hash4,
}
}
// location returns the ith hashed location using the four base hash values
func location(h [4]uint64, i uint) uint64 {
ii := uint64(i)
return h[ii%2] + ii*h[2+(((ii+(ii%2))%4)/2)]
}
// location returns the ith hashed location using the four base hash values
func (f *BloomFilter) location(h [4]uint64, i uint) uint {
return uint(location(h, i) % uint64(f.m))
}
// EstimateParameters estimates requirements for m and k.
// Based on https://bitbucket.org/ww/bloom/src/829aa19d01d9/bloom.go
// used with permission.
func EstimateParameters(n uint, p float64) (m uint, k uint) {
m = uint(math.Ceil(-1 * float64(n) * math.Log(p) / math.Pow(math.Log(2), 2)))
k = uint(math.Ceil(math.Log(2) * float64(m) / float64(n)))
return
}
// NewWithEstimates creates a new Bloom filter for about n items with fp
// false positive rate
func NewWithEstimates(n uint, fp float64) *BloomFilter {
m, k := EstimateParameters(n, fp)
return New(m, k)
}
// Cap returns the capacity, _m_, of a Bloom filter
func (f *BloomFilter) Cap() uint {
return f.m
}
// K returns the number of hash functions used in the BloomFilter
func (f *BloomFilter) K() uint {
return f.k
}
// BitSet returns the underlying bitset for this filter.
func (f *BloomFilter) BitSet() *bitset.BitSet {
return f.b
}
// Add data to the Bloom Filter. Returns the filter (allows chaining)
func (f *BloomFilter) Add(data []byte) *BloomFilter {
h := baseHashes(data)
for i := uint(0); i < f.k; i++ {
f.b.Set(f.location(h, i))
}
return f
}
// Merge the data from two Bloom Filters.
func (f *BloomFilter) Merge(g *BloomFilter) error {
// Make sure the m's and k's are the same, otherwise merging has no real use.
if f.m != g.m {
return fmt.Errorf("m's don't match: %d != %d", f.m, g.m)
}
if f.k != g.k {
return fmt.Errorf("k's don't match: %d != %d", f.m, g.m)
}
f.b.InPlaceUnion(g.b)
return nil
}
// Copy creates a copy of a Bloom filter.
func (f *BloomFilter) Copy() *BloomFilter {
fc := New(f.m, f.k)
fc.Merge(f) // #nosec
return fc
}
// AddString to the Bloom Filter. Returns the filter (allows chaining)
func (f *BloomFilter) AddString(data string) *BloomFilter {
return f.Add([]byte(data))
}
// Test returns true if the data is in the BloomFilter, false otherwise.
// If true, the result might be a false positive. If false, the data
// is definitely not in the set.
func (f *BloomFilter) Test(data []byte) bool {
h := baseHashes(data)
for i := uint(0); i < f.k; i++ {
if !f.b.Test(f.location(h, i)) {
return false
}
}
return true
}
// TestString returns true if the string is in the BloomFilter, false otherwise.
// If true, the result might be a false positive. If false, the data
// is definitely not in the set.
func (f *BloomFilter) TestString(data string) bool {
return f.Test([]byte(data))
}
// TestLocations returns true if all locations are set in the BloomFilter, false
// otherwise.
func (f *BloomFilter) TestLocations(locs []uint64) bool {
for i := 0; i < len(locs); i++ {
if !f.b.Test(uint(locs[i] % uint64(f.m))) {
return false
}
}
return true
}
// TestAndAdd is equivalent to calling Test(data) then Add(data).
// The filter is written to unconditionnally: even if the element is present,
// the corresponding bits are still set. See also TestOrAdd.
// Returns the result of Test.
func (f *BloomFilter) TestAndAdd(data []byte) bool {
present := true
h := baseHashes(data)
for i := uint(0); i < f.k; i++ {
l := f.location(h, i)
if !f.b.Test(l) {
present = false
}
f.b.Set(l)
}
return present
}
// TestAndAddString is the equivalent to calling Test(string) then Add(string).
// The filter is written to unconditionnally: even if the string is present,
// the corresponding bits are still set. See also TestOrAdd.
// Returns the result of Test.
func (f *BloomFilter) TestAndAddString(data string) bool {
return f.TestAndAdd([]byte(data))
}
// TestOrAdd is equivalent to calling Test(data) then if not present Add(data).
// If the element is already in the filter, then the filter is unchanged.
// Returns the result of Test.
func (f *BloomFilter) TestOrAdd(data []byte) bool {
present := true
h := baseHashes(data)
for i := uint(0); i < f.k; i++ {
l := f.location(h, i)
if !f.b.Test(l) {
present = false
f.b.Set(l)
}
}
return present
}
// TestOrAddString is the equivalent to calling Test(string) then if not present Add(string).
// If the string is already in the filter, then the filter is unchanged.
// Returns the result of Test.
func (f *BloomFilter) TestOrAddString(data string) bool {
return f.TestOrAdd([]byte(data))
}
// ClearAll clears all the data in a Bloom filter, removing all keys
func (f *BloomFilter) ClearAll() *BloomFilter {
f.b.ClearAll()
return f
}
// EstimateFalsePositiveRate returns, for a BloomFilter of m bits
// and k hash functions, an estimation of the false positive rate when
//
// storing n entries. This is an empirical, relatively slow
//
// test using integers as keys.
// This function is useful to validate the implementation.
func EstimateFalsePositiveRate(m, k, n uint) (fpRate float64) {
rounds := uint32(100000)
// We construct a new filter.
f := New(m, k)
n1 := make([]byte, 4)
// We populate the filter with n values.
for i := uint32(0); i < uint32(n); i++ {
binary.BigEndian.PutUint32(n1, i)
f.Add(n1)
}
fp := 0
// test for number of rounds
for i := uint32(0); i < rounds; i++ {
binary.BigEndian.PutUint32(n1, i+uint32(n)+1)
if f.Test(n1) {
fp++
}
}
fpRate = float64(fp) / (float64(rounds))
return
}
// Approximating the number of items
// https://en.wikipedia.org/wiki/Bloom_filter#Approximating_the_number_of_items_in_a_Bloom_filter
func (f *BloomFilter) ApproximatedSize() uint32 {
x := float64(f.b.Count())
m := float64(f.Cap())
k := float64(f.K())
size := -1 * m / k * math.Log(1-x/m) / math.Log(math.E)
return uint32(math.Floor(size + 0.5)) // round
}
// bloomFilterJSON is an unexported type for marshaling/unmarshaling BloomFilter struct.
type bloomFilterJSON struct {
M uint `json:"m"`
K uint `json:"k"`
B *bitset.BitSet `json:"b"`
}
// MarshalJSON implements json.Marshaler interface.
func (f BloomFilter) MarshalJSON() ([]byte, error) {
return json.Marshal(bloomFilterJSON{f.m, f.k, f.b})
}
// UnmarshalJSON implements json.Unmarshaler interface.
func (f *BloomFilter) UnmarshalJSON(data []byte) error {
var j bloomFilterJSON
err := json.Unmarshal(data, &j)
if err != nil {
return err
}
f.m = j.M
f.k = j.K
f.b = j.B
return nil
}
// WriteTo writes a binary representation of the BloomFilter to an i/o stream.
// It returns the number of bytes written.
//
// Performance: if this function is used to write to a disk or network
// connection, it might be beneficial to wrap the stream in a bufio.Writer.
// E.g.,
//
// f, err := os.Create("myfile")
// w := bufio.NewWriter(f)
func (f *BloomFilter) WriteTo(stream io.Writer) (int64, error) {
err := binary.Write(stream, binary.BigEndian, uint64(f.m))
if err != nil {
return 0, err
}
err = binary.Write(stream, binary.BigEndian, uint64(f.k))
if err != nil {
return 0, err
}
numBytes, err := f.b.WriteTo(stream)
return numBytes + int64(2*binary.Size(uint64(0))), err
}
// ReadFrom reads a binary representation of the BloomFilter (such as might
// have been written by WriteTo()) from an i/o stream. It returns the number
// of bytes read.
//
// Performance: if this function is used to read from a disk or network
// connection, it might be beneficial to wrap the stream in a bufio.Reader.
// E.g.,
//
// f, err := os.Open("myfile")
// r := bufio.NewReader(f)
func (f *BloomFilter) ReadFrom(stream io.Reader) (int64, error) {
var m, k uint64
err := binary.Read(stream, binary.BigEndian, &m)
if err != nil {
return 0, err
}
err = binary.Read(stream, binary.BigEndian, &k)
if err != nil {
return 0, err
}
b := &bitset.BitSet{}
numBytes, err := b.ReadFrom(stream)
if err != nil {
return 0, err
}
f.m = uint(m)
f.k = uint(k)
f.b = b
return numBytes + int64(2*binary.Size(uint64(0))), nil
}
// GobEncode implements gob.GobEncoder interface.
func (f *BloomFilter) GobEncode() ([]byte, error) {
var buf bytes.Buffer
_, err := f.WriteTo(&buf)
if err != nil {
return nil, err
}
return buf.Bytes(), nil
}
// GobDecode implements gob.GobDecoder interface.
func (f *BloomFilter) GobDecode(data []byte) error {
buf := bytes.NewBuffer(data)
_, err := f.ReadFrom(buf)
return err
}
// MarshalBinary implements binary.BinaryMarshaler interface.
func (f *BloomFilter) MarshalBinary() ([]byte, error) {
var buf bytes.Buffer
_, err := f.WriteTo(&buf)
if err != nil {
return nil, err
}
return buf.Bytes(), nil
}
// UnmarshalBinary implements binary.BinaryUnmarshaler interface.
func (f *BloomFilter) UnmarshalBinary(data []byte) error {
buf := bytes.NewBuffer(data)
_, err := f.ReadFrom(buf)
return err
}
// Equal tests for the equality of two Bloom filters
func (f *BloomFilter) Equal(g *BloomFilter) bool {
return f.m == g.m && f.k == g.k && f.b.Equal(g.b)
}
// Locations returns a list of hash locations representing a data item.
func Locations(data []byte, k uint) []uint64 {
locs := make([]uint64, k)
// calculate locations
h := baseHashes(data)
for i := uint(0); i < k; i++ {
locs[i] = location(h, i)
}
return locs
}
|