1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
|
/*
* Branch/Call/Jump (BCJ) filter decoders
*
* Authors: Lasse Collin <lasse.collin@tukaani.org>
* Igor Pavlov <http://7-zip.org/>
*
* Translation to Go: Michael Cross <https://github.com/xi2>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
package xz
/* from linux/lib/xz/xz_dec_bcj.c *************************************/
type xzDecBCJ struct {
/* Type of the BCJ filter being used */
typ xzFilterID
/*
* Return value of the next filter in the chain. We need to preserve
* this information across calls, because we must not call the next
* filter anymore once it has returned xzStreamEnd
*/
ret xzRet
/*
* Absolute position relative to the beginning of the uncompressed
* data (in a single .xz Block).
*/
pos int
/* x86 filter state */
x86PrevMask uint32
/* Temporary space to hold the variables from xzBuf */
out []byte
outPos int
temp struct {
/* Amount of already filtered data in the beginning of buf */
filtered int
/*
* Buffer to hold a mix of filtered and unfiltered data. This
* needs to be big enough to hold Alignment + 2 * Look-ahead:
*
* Type Alignment Look-ahead
* x86 1 4
* PowerPC 4 0
* IA-64 16 0
* ARM 4 0
* ARM-Thumb 2 2
* SPARC 4 0
*/
buf []byte // slice buf will be backed by bufArray
bufArray [16]byte
}
}
/*
* This is used to test the most significant byte of a memory address
* in an x86 instruction.
*/
func bcjX86TestMSByte(b byte) bool {
return b == 0x00 || b == 0xff
}
func bcjX86Filter(s *xzDecBCJ, buf []byte) int {
var maskToAllowedStatus = []bool{
true, true, true, false, true, false, false, false,
}
var maskToBitNum = []byte{0, 1, 2, 2, 3, 3, 3, 3}
var i int
var prevPos int = -1
var prevMask uint32 = s.x86PrevMask
var src uint32
var dest uint32
var j uint32
var b byte
if len(buf) <= 4 {
return 0
}
for i = 0; i < len(buf)-4; i++ {
if buf[i]&0xfe != 0xe8 {
continue
}
prevPos = i - prevPos
if prevPos > 3 {
prevMask = 0
} else {
prevMask = (prevMask << (uint(prevPos) - 1)) & 7
if prevMask != 0 {
b = buf[i+4-int(maskToBitNum[prevMask])]
if !maskToAllowedStatus[prevMask] || bcjX86TestMSByte(b) {
prevPos = i
prevMask = prevMask<<1 | 1
continue
}
}
}
prevPos = i
if bcjX86TestMSByte(buf[i+4]) {
src = getLE32(buf[i+1:])
for {
dest = src - uint32(s.pos+i+5)
if prevMask == 0 {
break
}
j = uint32(maskToBitNum[prevMask]) * 8
b = byte(dest >> (24 - j))
if !bcjX86TestMSByte(b) {
break
}
src = dest ^ (1<<(32-j) - 1)
}
dest &= 0x01FFFFFF
dest |= 0 - dest&0x01000000
putLE32(dest, buf[i+1:])
i += 4
} else {
prevMask = prevMask<<1 | 1
}
}
prevPos = i - prevPos
if prevPos > 3 {
s.x86PrevMask = 0
} else {
s.x86PrevMask = prevMask << (uint(prevPos) - 1)
}
return i
}
func bcjPowerPCFilter(s *xzDecBCJ, buf []byte) int {
var i int
var instr uint32
for i = 0; i+4 <= len(buf); i += 4 {
instr = getBE32(buf[i:])
if instr&0xFC000003 == 0x48000001 {
instr &= 0x03FFFFFC
instr -= uint32(s.pos + i)
instr &= 0x03FFFFFC
instr |= 0x48000001
putBE32(instr, buf[i:])
}
}
return i
}
var bcjIA64BranchTable = [...]byte{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
4, 4, 6, 6, 0, 0, 7, 7,
4, 4, 0, 0, 4, 4, 0, 0,
}
func bcjIA64Filter(s *xzDecBCJ, buf []byte) int {
var branchTable = bcjIA64BranchTable[:]
/*
* The local variables take a little bit stack space, but it's less
* than what LZMA2 decoder takes, so it doesn't make sense to reduce
* stack usage here without doing that for the LZMA2 decoder too.
*/
/* Loop counters */
var i int
var j int
/* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
var slot uint32
/* Bitwise offset of the instruction indicated by slot */
var bitPos uint32
/* bit_pos split into byte and bit parts */
var bytePos uint32
var bitRes uint32
/* Address part of an instruction */
var addr uint32
/* Mask used to detect which instructions to convert */
var mask uint32
/* 41-bit instruction stored somewhere in the lowest 48 bits */
var instr uint64
/* Instruction normalized with bit_res for easier manipulation */
var norm uint64
for i = 0; i+16 <= len(buf); i += 16 {
mask = uint32(branchTable[buf[i]&0x1f])
for slot, bitPos = 0, 5; slot < 3; slot, bitPos = slot+1, bitPos+41 {
if (mask>>slot)&1 == 0 {
continue
}
bytePos = bitPos >> 3
bitRes = bitPos & 7
instr = 0
for j = 0; j < 6; j++ {
instr |= uint64(buf[i+j+int(bytePos)]) << (8 * uint(j))
}
norm = instr >> bitRes
if (norm>>37)&0x0f == 0x05 && (norm>>9)&0x07 == 0 {
addr = uint32((norm >> 13) & 0x0fffff)
addr |= (uint32(norm>>36) & 1) << 20
addr <<= 4
addr -= uint32(s.pos + i)
addr >>= 4
norm &= ^(uint64(0x8fffff) << 13)
norm |= uint64(addr&0x0fffff) << 13
norm |= uint64(addr&0x100000) << (36 - 20)
instr &= 1<<bitRes - 1
instr |= norm << bitRes
for j = 0; j < 6; j++ {
buf[i+j+int(bytePos)] = byte(instr >> (8 * uint(j)))
}
}
}
}
return i
}
func bcjARMFilter(s *xzDecBCJ, buf []byte) int {
var i int
var addr uint32
for i = 0; i+4 <= len(buf); i += 4 {
if buf[i+3] == 0xeb {
addr = uint32(buf[i]) | uint32(buf[i+1])<<8 |
uint32(buf[i+2])<<16
addr <<= 2
addr -= uint32(s.pos + i + 8)
addr >>= 2
buf[i] = byte(addr)
buf[i+1] = byte(addr >> 8)
buf[i+2] = byte(addr >> 16)
}
}
return i
}
func bcjARMThumbFilter(s *xzDecBCJ, buf []byte) int {
var i int
var addr uint32
for i = 0; i+4 <= len(buf); i += 2 {
if buf[i+1]&0xf8 == 0xf0 && buf[i+3]&0xf8 == 0xf8 {
addr = uint32(buf[i+1]&0x07)<<19 |
uint32(buf[i])<<11 |
uint32(buf[i+3]&0x07)<<8 |
uint32(buf[i+2])
addr <<= 1
addr -= uint32(s.pos + i + 4)
addr >>= 1
buf[i+1] = byte(0xf0 | (addr>>19)&0x07)
buf[i] = byte(addr >> 11)
buf[i+3] = byte(0xf8 | (addr>>8)&0x07)
buf[i+2] = byte(addr)
i += 2
}
}
return i
}
func bcjSPARCFilter(s *xzDecBCJ, buf []byte) int {
var i int
var instr uint32
for i = 0; i+4 <= len(buf); i += 4 {
instr = getBE32(buf[i:])
if instr>>22 == 0x100 || instr>>22 == 0x1ff {
instr <<= 2
instr -= uint32(s.pos + i)
instr >>= 2
instr = (0x40000000 - instr&0x400000) |
0x40000000 | (instr & 0x3FFFFF)
putBE32(instr, buf[i:])
}
}
return i
}
/*
* Apply the selected BCJ filter. Update *pos and s.pos to match the amount
* of data that got filtered.
*/
func bcjApply(s *xzDecBCJ, buf []byte, pos *int) {
var filtered int
buf = buf[*pos:]
switch s.typ {
case idBCJX86:
filtered = bcjX86Filter(s, buf)
case idBCJPowerPC:
filtered = bcjPowerPCFilter(s, buf)
case idBCJIA64:
filtered = bcjIA64Filter(s, buf)
case idBCJARM:
filtered = bcjARMFilter(s, buf)
case idBCJARMThumb:
filtered = bcjARMThumbFilter(s, buf)
case idBCJSPARC:
filtered = bcjSPARCFilter(s, buf)
default:
/* Never reached */
}
*pos += filtered
s.pos += filtered
}
/*
* Flush pending filtered data from temp to the output buffer.
* Move the remaining mixture of possibly filtered and unfiltered
* data to the beginning of temp.
*/
func bcjFlush(s *xzDecBCJ, b *xzBuf) {
var copySize int
copySize = len(b.out) - b.outPos
if copySize > s.temp.filtered {
copySize = s.temp.filtered
}
copy(b.out[b.outPos:], s.temp.buf[:copySize])
b.outPos += copySize
s.temp.filtered -= copySize
copy(s.temp.buf, s.temp.buf[copySize:])
s.temp.buf = s.temp.buf[:len(s.temp.buf)-copySize]
}
/*
* Decode raw stream which has a BCJ filter as the first filter.
*
* The BCJ filter functions are primitive in sense that they process the
* data in chunks of 1-16 bytes. To hide this issue, this function does
* some buffering.
*/
func xzDecBCJRun(s *xzDecBCJ, b *xzBuf, chain func(*xzBuf) xzRet) xzRet {
var outStart int
/*
* Flush pending already filtered data to the output buffer. Return
* immediately if we couldn't flush everything, or if the next
* filter in the chain had already returned xzStreamEnd.
*/
if s.temp.filtered > 0 {
bcjFlush(s, b)
if s.temp.filtered > 0 {
return xzOK
}
if s.ret == xzStreamEnd {
return xzStreamEnd
}
}
/*
* If we have more output space than what is currently pending in
* temp, copy the unfiltered data from temp to the output buffer
* and try to fill the output buffer by decoding more data from the
* next filter in the chain. Apply the BCJ filter on the new data
* in the output buffer. If everything cannot be filtered, copy it
* to temp and rewind the output buffer position accordingly.
*
* This needs to be always run when len(temp.buf) == 0 to handle a special
* case where the output buffer is full and the next filter has no
* more output coming but hasn't returned xzStreamEnd yet.
*/
if len(s.temp.buf) < len(b.out)-b.outPos || len(s.temp.buf) == 0 {
outStart = b.outPos
copy(b.out[b.outPos:], s.temp.buf)
b.outPos += len(s.temp.buf)
s.ret = chain(b)
if s.ret != xzStreamEnd && s.ret != xzOK {
return s.ret
}
bcjApply(s, b.out[:b.outPos], &outStart)
/*
* As an exception, if the next filter returned xzStreamEnd,
* we can do that too, since the last few bytes that remain
* unfiltered are meant to remain unfiltered.
*/
if s.ret == xzStreamEnd {
return xzStreamEnd
}
s.temp.buf = s.temp.bufArray[:b.outPos-outStart]
b.outPos -= len(s.temp.buf)
copy(s.temp.buf, b.out[b.outPos:])
/*
* If there wasn't enough input to the next filter to fill
* the output buffer with unfiltered data, there's no point
* to try decoding more data to temp.
*/
if b.outPos+len(s.temp.buf) < len(b.out) {
return xzOK
}
}
/*
* We have unfiltered data in temp. If the output buffer isn't full
* yet, try to fill the temp buffer by decoding more data from the
* next filter. Apply the BCJ filter on temp. Then we hopefully can
* fill the actual output buffer by copying filtered data from temp.
* A mix of filtered and unfiltered data may be left in temp; it will
* be taken care on the next call to this function.
*/
if b.outPos < len(b.out) {
/* Make b.out temporarily point to s.temp. */
s.out = b.out
s.outPos = b.outPos
b.out = s.temp.bufArray[:]
b.outPos = len(s.temp.buf)
s.ret = chain(b)
s.temp.buf = s.temp.bufArray[:b.outPos]
b.out = s.out
b.outPos = s.outPos
if s.ret != xzOK && s.ret != xzStreamEnd {
return s.ret
}
bcjApply(s, s.temp.buf, &s.temp.filtered)
/*
* If the next filter returned xzStreamEnd, we mark that
* everything is filtered, since the last unfiltered bytes
* of the stream are meant to be left as is.
*/
if s.ret == xzStreamEnd {
s.temp.filtered = len(s.temp.buf)
}
bcjFlush(s, b)
if s.temp.filtered > 0 {
return xzOK
}
}
return s.ret
}
/*
* Allocate memory for BCJ decoders. xzDecBCJReset must be used before
* calling xzDecBCJRun.
*/
func xzDecBCJCreate() *xzDecBCJ {
return new(xzDecBCJ)
}
/*
* Decode the Filter ID of a BCJ filter and check the start offset is
* valid. Returns xzOK if the given Filter ID and offset is
* supported. Otherwise xzOptionsError is returned.
*/
func xzDecBCJReset(s *xzDecBCJ, id xzFilterID, offset int) xzRet {
switch id {
case idBCJX86:
case idBCJPowerPC:
case idBCJIA64:
case idBCJARM:
case idBCJARMThumb:
case idBCJSPARC:
default:
/* Unsupported Filter ID */
return xzOptionsError
}
// check offset is a multiple of alignment
switch id {
case idBCJPowerPC, idBCJARM, idBCJSPARC:
if offset%4 != 0 {
return xzOptionsError
}
case idBCJIA64:
if offset%16 != 0 {
return xzOptionsError
}
case idBCJARMThumb:
if offset%2 != 0 {
return xzOptionsError
}
}
s.typ = id
s.ret = xzOK
s.pos = offset
s.x86PrevMask = 0
s.temp.filtered = 0
s.temp.buf = nil
return xzOK
}
|