1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
// Package treeprint provides a simple ASCII tree composing tool.
package treeprint
import (
"bytes"
"fmt"
"io"
"reflect"
"strings"
)
// Value defines any value
type Value interface{}
// MetaValue defines any meta value
type MetaValue interface{}
// NodeVisitor function type for iterating over nodes
type NodeVisitor func(item *Node)
// Tree represents a tree structure with leaf-nodes and branch-nodes.
type Tree interface {
// AddNode adds a new Node to a branch.
AddNode(v Value) Tree
// AddMetaNode adds a new Node with meta value provided to a branch.
AddMetaNode(meta MetaValue, v Value) Tree
// AddBranch adds a new branch Node (a level deeper).
AddBranch(v Value) Tree
// AddMetaBranch adds a new branch Node (a level deeper) with meta value provided.
AddMetaBranch(meta MetaValue, v Value) Tree
// Branch converts a leaf-Node to a branch-Node,
// applying this on a branch-Node does no effect.
Branch() Tree
// FindByMeta finds a Node whose meta value matches the provided one by reflect.DeepEqual,
// returns nil if not found.
FindByMeta(meta MetaValue) Tree
// FindByValue finds a Node whose value matches the provided one by reflect.DeepEqual,
// returns nil if not found.
FindByValue(value Value) Tree
// returns the last Node of a tree
FindLastNode() Tree
// String renders the tree or subtree as a string.
String() string
// Bytes renders the tree or subtree as byteslice.
Bytes() []byte
SetValue(value Value)
SetMetaValue(meta MetaValue)
// VisitAll iterates over the tree, branches and nodes.
// If need to iterate over the whole tree, use the root Node.
// Note this method uses a breadth-first approach.
VisitAll(fn NodeVisitor)
}
type Node struct {
Root *Node
Meta MetaValue
Value Value
Nodes []*Node
}
func (n *Node) FindLastNode() Tree {
ns := n.Nodes
if len(ns) == 0 {
return nil
}
return ns[len(ns)-1]
}
func (n *Node) AddNode(v Value) Tree {
n.Nodes = append(n.Nodes, &Node{
Root: n,
Value: v,
})
return n
}
func (n *Node) AddMetaNode(meta MetaValue, v Value) Tree {
n.Nodes = append(n.Nodes, &Node{
Root: n,
Meta: meta,
Value: v,
})
return n
}
func (n *Node) AddBranch(v Value) Tree {
branch := &Node{
Root: n,
Value: v,
}
n.Nodes = append(n.Nodes, branch)
return branch
}
func (n *Node) AddMetaBranch(meta MetaValue, v Value) Tree {
branch := &Node{
Root: n,
Meta: meta,
Value: v,
}
n.Nodes = append(n.Nodes, branch)
return branch
}
func (n *Node) Branch() Tree {
n.Root = nil
return n
}
func (n *Node) FindByMeta(meta MetaValue) Tree {
for _, node := range n.Nodes {
if reflect.DeepEqual(node.Meta, meta) {
return node
}
if v := node.FindByMeta(meta); v != nil {
return v
}
}
return nil
}
func (n *Node) FindByValue(value Value) Tree {
for _, node := range n.Nodes {
if reflect.DeepEqual(node.Value, value) {
return node
}
if v := node.FindByMeta(value); v != nil {
return v
}
}
return nil
}
func (n *Node) Bytes() []byte {
buf := new(bytes.Buffer)
level := 0
var levelsEnded []int
if n.Root == nil {
if n.Meta != nil {
buf.WriteString(fmt.Sprintf("[%v] %v", n.Meta, n.Value))
} else {
buf.WriteString(fmt.Sprintf("%v", n.Value))
}
buf.WriteByte('\n')
} else {
edge := EdgeTypeMid
if len(n.Nodes) == 0 {
edge = EdgeTypeEnd
levelsEnded = append(levelsEnded, level)
}
printValues(buf, 0, levelsEnded, edge, n)
}
if len(n.Nodes) > 0 {
printNodes(buf, level, levelsEnded, n.Nodes)
}
return buf.Bytes()
}
func (n *Node) String() string {
return string(n.Bytes())
}
func (n *Node) SetValue(value Value) {
n.Value = value
}
func (n *Node) SetMetaValue(meta MetaValue) {
n.Meta = meta
}
func (n *Node) VisitAll(fn NodeVisitor) {
for _, node := range n.Nodes {
fn(node)
if len(node.Nodes) > 0 {
node.VisitAll(fn)
continue
}
}
}
func printNodes(wr io.Writer,
level int, levelsEnded []int, nodes []*Node) {
for i, node := range nodes {
edge := EdgeTypeMid
if i == len(nodes)-1 {
levelsEnded = append(levelsEnded, level)
edge = EdgeTypeEnd
}
printValues(wr, level, levelsEnded, edge, node)
if len(node.Nodes) > 0 {
printNodes(wr, level+1, levelsEnded, node.Nodes)
}
}
}
func printValues(wr io.Writer,
level int, levelsEnded []int, edge EdgeType, node *Node) {
for i := 0; i < level; i++ {
if isEnded(levelsEnded, i) {
fmt.Fprint(wr, strings.Repeat(" ", IndentSize+1))
continue
}
fmt.Fprintf(wr, "%s%s", EdgeTypeLink, strings.Repeat(" ", IndentSize))
}
val := renderValue(level, node)
meta := node.Meta
if meta != nil {
fmt.Fprintf(wr, "%s [%v] %v\n", edge, meta, val)
return
}
fmt.Fprintf(wr, "%s %v\n", edge, val)
}
func isEnded(levelsEnded []int, level int) bool {
for _, l := range levelsEnded {
if l == level {
return true
}
}
return false
}
func renderValue(level int, node *Node) Value {
lines := strings.Split(fmt.Sprintf("%v", node.Value), "\n")
// If value does not contain multiple lines, return itself.
if len(lines) < 2 {
return node.Value
}
// If value contains multiple lines,
// generate a padding and prefix each line with it.
pad := padding(level, node)
for i := 1; i < len(lines); i++ {
lines[i] = fmt.Sprintf("%s%s", pad, lines[i])
}
return strings.Join(lines, "\n")
}
// padding returns a padding for the multiline values with correctly placed link edges.
// It is generated by traversing the tree upwards (from leaf to the root of the tree)
// and, on each level, checking if the Node the last one of its siblings.
// If a Node is the last one, the padding on that level should be empty (there's nothing to link to below it).
// If a Node is not the last one, the padding on that level should be the link edge so the sibling below is correctly connected.
func padding(level int, node *Node) string {
links := make([]string, level+1)
for node.Root != nil {
if isLast(node) {
links[level] = strings.Repeat(" ", IndentSize+1)
} else {
links[level] = fmt.Sprintf("%s%s", EdgeTypeLink, strings.Repeat(" ", IndentSize))
}
level--
node = node.Root
}
return strings.Join(links, "")
}
// isLast checks if the Node is the last one in the slice of its parent children
func isLast(n *Node) bool {
return n == n.Root.FindLastNode()
}
type EdgeType string
var (
EdgeTypeLink EdgeType = "│"
EdgeTypeMid EdgeType = "├──"
EdgeTypeEnd EdgeType = "└──"
)
// IndentSize is the number of spaces per tree level.
var IndentSize = 3
// New Generates new tree
func New() Tree {
return &Node{Value: "."}
}
// NewWithRoot Generates new tree with the given root value
func NewWithRoot(root Value) Tree {
return &Node{Value: root}
}
|