File: treeprint.go

package info (click to toggle)
golang-github-xlab-treeprint 1.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 128 kB
  • sloc: makefile: 2
file content (294 lines) | stat: -rw-r--r-- 6,680 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
// Package treeprint provides a simple ASCII tree composing tool.
package treeprint

import (
	"bytes"
	"fmt"
	"io"
	"reflect"
	"strings"
)

// Value defines any value
type Value interface{}

// MetaValue defines any meta value
type MetaValue interface{}

// NodeVisitor function type for iterating over nodes
type NodeVisitor func(item *Node)

// Tree represents a tree structure with leaf-nodes and branch-nodes.
type Tree interface {
	// AddNode adds a new Node to a branch.
	AddNode(v Value) Tree
	// AddMetaNode adds a new Node with meta value provided to a branch.
	AddMetaNode(meta MetaValue, v Value) Tree
	// AddBranch adds a new branch Node (a level deeper).
	AddBranch(v Value) Tree
	// AddMetaBranch adds a new branch Node (a level deeper) with meta value provided.
	AddMetaBranch(meta MetaValue, v Value) Tree
	// Branch converts a leaf-Node to a branch-Node,
	// applying this on a branch-Node does no effect.
	Branch() Tree
	// FindByMeta finds a Node whose meta value matches the provided one by reflect.DeepEqual,
	// returns nil if not found.
	FindByMeta(meta MetaValue) Tree
	// FindByValue finds a Node whose value matches the provided one by reflect.DeepEqual,
	// returns nil if not found.
	FindByValue(value Value) Tree
	//  returns the last Node of a tree
	FindLastNode() Tree
	// String renders the tree or subtree as a string.
	String() string
	// Bytes renders the tree or subtree as byteslice.
	Bytes() []byte

	SetValue(value Value)
	SetMetaValue(meta MetaValue)

	// VisitAll iterates over the tree, branches and nodes.
	// If need to iterate over the whole tree, use the root Node.
	// Note this method uses a breadth-first approach.
	VisitAll(fn NodeVisitor)
}

type Node struct {
	Root  *Node
	Meta  MetaValue
	Value Value
	Nodes []*Node
}

func (n *Node) FindLastNode() Tree {
	ns := n.Nodes
	if len(ns) == 0 {
		return nil
	}
	return ns[len(ns)-1]
}

func (n *Node) AddNode(v Value) Tree {
	n.Nodes = append(n.Nodes, &Node{
		Root:  n,
		Value: v,
	})
	return n
}

func (n *Node) AddMetaNode(meta MetaValue, v Value) Tree {
	n.Nodes = append(n.Nodes, &Node{
		Root:  n,
		Meta:  meta,
		Value: v,
	})
	return n
}

func (n *Node) AddBranch(v Value) Tree {
	branch := &Node{
		Root:  n,
		Value: v,
	}
	n.Nodes = append(n.Nodes, branch)
	return branch
}

func (n *Node) AddMetaBranch(meta MetaValue, v Value) Tree {
	branch := &Node{
		Root:  n,
		Meta:  meta,
		Value: v,
	}
	n.Nodes = append(n.Nodes, branch)
	return branch
}

func (n *Node) Branch() Tree {
	n.Root = nil
	return n
}

func (n *Node) FindByMeta(meta MetaValue) Tree {
	for _, node := range n.Nodes {
		if reflect.DeepEqual(node.Meta, meta) {
			return node
		}
		if v := node.FindByMeta(meta); v != nil {
			return v
		}
	}
	return nil
}

func (n *Node) FindByValue(value Value) Tree {
	for _, node := range n.Nodes {
		if reflect.DeepEqual(node.Value, value) {
			return node
		}
		if v := node.FindByMeta(value); v != nil {
			return v
		}
	}
	return nil
}

func (n *Node) Bytes() []byte {
	buf := new(bytes.Buffer)
	level := 0
	var levelsEnded []int
	if n.Root == nil {
		if n.Meta != nil {
			buf.WriteString(fmt.Sprintf("[%v]  %v", n.Meta, n.Value))
		} else {
			buf.WriteString(fmt.Sprintf("%v", n.Value))
		}
		buf.WriteByte('\n')
	} else {
		edge := EdgeTypeMid
		if len(n.Nodes) == 0 {
			edge = EdgeTypeEnd
			levelsEnded = append(levelsEnded, level)
		}
		printValues(buf, 0, levelsEnded, edge, n)
	}
	if len(n.Nodes) > 0 {
		printNodes(buf, level, levelsEnded, n.Nodes)
	}
	return buf.Bytes()
}

func (n *Node) String() string {
	return string(n.Bytes())
}

func (n *Node) SetValue(value Value) {
	n.Value = value
}

func (n *Node) SetMetaValue(meta MetaValue) {
	n.Meta = meta
}

func (n *Node) VisitAll(fn NodeVisitor) {
	for _, node := range n.Nodes {
		fn(node)

		if len(node.Nodes) > 0 {
			node.VisitAll(fn)
			continue
		}
	}
}

func printNodes(wr io.Writer,
	level int, levelsEnded []int, nodes []*Node) {

	for i, node := range nodes {
		edge := EdgeTypeMid
		if i == len(nodes)-1 {
			levelsEnded = append(levelsEnded, level)
			edge = EdgeTypeEnd
		}
		printValues(wr, level, levelsEnded, edge, node)
		if len(node.Nodes) > 0 {
			printNodes(wr, level+1, levelsEnded, node.Nodes)
		}
	}
}

func printValues(wr io.Writer,
	level int, levelsEnded []int, edge EdgeType, node *Node) {

	for i := 0; i < level; i++ {
		if isEnded(levelsEnded, i) {
			fmt.Fprint(wr, strings.Repeat(" ", IndentSize+1))
			continue
		}
		fmt.Fprintf(wr, "%s%s", EdgeTypeLink, strings.Repeat(" ", IndentSize))
	}

	val := renderValue(level, node)
	meta := node.Meta

	if meta != nil {
		fmt.Fprintf(wr, "%s [%v]  %v\n", edge, meta, val)
		return
	}
	fmt.Fprintf(wr, "%s %v\n", edge, val)
}

func isEnded(levelsEnded []int, level int) bool {
	for _, l := range levelsEnded {
		if l == level {
			return true
		}
	}
	return false
}

func renderValue(level int, node *Node) Value {
	lines := strings.Split(fmt.Sprintf("%v", node.Value), "\n")

	// If value does not contain multiple lines, return itself.
	if len(lines) < 2 {
		return node.Value
	}

	// If value contains multiple lines,
	// generate a padding and prefix each line with it.
	pad := padding(level, node)

	for i := 1; i < len(lines); i++ {
		lines[i] = fmt.Sprintf("%s%s", pad, lines[i])
	}

	return strings.Join(lines, "\n")
}

// padding returns a padding for the multiline values with correctly placed link edges.
// It is generated by traversing the tree upwards (from leaf to the root of the tree)
// and, on each level, checking if the Node the last one of its siblings.
// If a Node is the last one, the padding on that level should be empty (there's nothing to link to below it).
// If a Node is not the last one, the padding on that level should be the link edge so the sibling below is correctly connected.
func padding(level int, node *Node) string {
	links := make([]string, level+1)

	for node.Root != nil {
		if isLast(node) {
			links[level] = strings.Repeat(" ", IndentSize+1)
		} else {
			links[level] = fmt.Sprintf("%s%s", EdgeTypeLink, strings.Repeat(" ", IndentSize))
		}
		level--
		node = node.Root
	}

	return strings.Join(links, "")
}

// isLast checks if the Node is the last one in the slice of its parent children
func isLast(n *Node) bool {
	return n == n.Root.FindLastNode()
}

type EdgeType string

var (
	EdgeTypeLink EdgeType = "│"
	EdgeTypeMid  EdgeType = "├──"
	EdgeTypeEnd  EdgeType = "└──"
)

// IndentSize is the number of spaces per tree level.
var IndentSize = 3

// New Generates new tree
func New() Tree {
	return &Node{Value: "."}
}

// NewWithRoot Generates new tree with the given root value
func NewWithRoot(root Value) Tree {
	return &Node{Value: root}
}