1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
/*
Package net provides utility functions for working with IPs (net.IP).
*/
package net
import (
"encoding/binary"
"fmt"
"math"
"net"
)
// IPVersion is version of IP address.
type IPVersion string
// Helper constants.
const (
IPv4Uint32Count = 1
IPv6Uint32Count = 4
BitsPerUint32 = 32
BytePerUint32 = 4
IPv4 IPVersion = "IPv4"
IPv6 IPVersion = "IPv6"
)
// ErrInvalidBitPosition is returned when bits requested is not valid.
var ErrInvalidBitPosition = fmt.Errorf("bit position not valid")
// ErrVersionMismatch is returned upon mismatch in network input versions.
var ErrVersionMismatch = fmt.Errorf("Network input version mismatch")
// ErrNoGreatestCommonBit is an error returned when no greatest common bit
// exists for the cidr ranges.
var ErrNoGreatestCommonBit = fmt.Errorf("No greatest common bit")
// NetworkNumber represents an IP address using uint32 as internal storage.
// IPv4 usings 1 uint32, while IPv6 uses 4 uint32.
type NetworkNumber []uint32
// NewNetworkNumber returns a equivalent NetworkNumber to given IP address,
// return nil if ip is neither IPv4 nor IPv6.
func NewNetworkNumber(ip net.IP) NetworkNumber {
if ip == nil {
return nil
}
coercedIP := ip.To4()
parts := 1
if coercedIP == nil {
coercedIP = ip.To16()
parts = 4
}
if coercedIP == nil {
return nil
}
nn := make(NetworkNumber, parts)
for i := 0; i < parts; i++ {
idx := i * net.IPv4len
nn[i] = binary.BigEndian.Uint32(coercedIP[idx : idx+net.IPv4len])
}
return nn
}
// ToV4 returns ip address if ip is IPv4, returns nil otherwise.
func (n NetworkNumber) ToV4() NetworkNumber {
if len(n) != IPv4Uint32Count {
return nil
}
return n
}
// ToV6 returns ip address if ip is IPv6, returns nil otherwise.
func (n NetworkNumber) ToV6() NetworkNumber {
if len(n) != IPv6Uint32Count {
return nil
}
return n
}
// ToIP returns equivalent net.IP.
func (n NetworkNumber) ToIP() net.IP {
ip := make(net.IP, len(n)*BytePerUint32)
for i := 0; i < len(n); i++ {
idx := i * net.IPv4len
binary.BigEndian.PutUint32(ip[idx:idx+net.IPv4len], n[i])
}
if len(ip) == net.IPv4len {
ip = net.IPv4(ip[0], ip[1], ip[2], ip[3])
}
return ip
}
// Equal is the equality test for 2 network numbers.
func (n NetworkNumber) Equal(n1 NetworkNumber) bool {
if len(n) != len(n1) {
return false
}
if n[0] != n1[0] {
return false
}
if len(n) == IPv6Uint32Count {
return n[1] == n1[1] && n[2] == n1[2] && n[3] == n1[3]
}
return true
}
// Next returns the next logical network number.
func (n NetworkNumber) Next() NetworkNumber {
newIP := make(NetworkNumber, len(n))
copy(newIP, n)
for i := len(newIP) - 1; i >= 0; i-- {
newIP[i]++
if newIP[i] > 0 {
break
}
}
return newIP
}
// Previous returns the previous logical network number.
func (n NetworkNumber) Previous() NetworkNumber {
newIP := make(NetworkNumber, len(n))
copy(newIP, n)
for i := len(newIP) - 1; i >= 0; i-- {
newIP[i]--
if newIP[i] < math.MaxUint32 {
break
}
}
return newIP
}
// Bit returns uint32 representing the bit value at given position, e.g.,
// "128.0.0.0" has bit value of 1 at position 31, and 0 for positions 30 to 0.
func (n NetworkNumber) Bit(position uint) (uint32, error) {
if int(position) > len(n)*BitsPerUint32-1 {
return 0, ErrInvalidBitPosition
}
idx := len(n) - 1 - int(position/BitsPerUint32)
// Mod 31 to get array index.
rShift := position & (BitsPerUint32 - 1)
return (n[idx] >> rShift) & 1, nil
}
// LeastCommonBitPosition returns the smallest position of the preceding common
// bits of the 2 network numbers, and returns an error ErrNoGreatestCommonBit
// if the two network number diverges from the first bit.
// e.g., if the network number diverges after the 1st bit, it returns 131 for
// IPv6 and 31 for IPv4 .
func (n NetworkNumber) LeastCommonBitPosition(n1 NetworkNumber) (uint, error) {
if len(n) != len(n1) {
return 0, ErrVersionMismatch
}
for i := 0; i < len(n); i++ {
mask := uint32(1) << 31
pos := uint(31)
for ; mask > 0; mask >>= 1 {
if n[i]&mask != n1[i]&mask {
if i == 0 && pos == 31 {
return 0, ErrNoGreatestCommonBit
}
return (pos + 1) + uint(BitsPerUint32)*uint(len(n)-i-1), nil
}
pos--
}
}
return 0, nil
}
// Network represents a block of network numbers, also known as CIDR.
type Network struct {
net.IPNet
Number NetworkNumber
Mask NetworkNumberMask
}
// NewNetwork returns Network built using given net.IPNet.
func NewNetwork(ipNet net.IPNet) Network {
return Network{
IPNet: ipNet,
Number: NewNetworkNumber(ipNet.IP),
Mask: NetworkNumberMask(NewNetworkNumber(net.IP(ipNet.Mask))),
}
}
// Masked returns a new network conforming to new mask.
func (n Network) Masked(ones int) Network {
mask := net.CIDRMask(ones, len(n.Number)*BitsPerUint32)
return NewNetwork(net.IPNet{
IP: n.IP.Mask(mask),
Mask: mask,
})
}
// Contains returns true if NetworkNumber is in range of Network, false
// otherwise.
func (n Network) Contains(nn NetworkNumber) bool {
if len(n.Mask) != len(nn) {
return false
}
if nn[0]&n.Mask[0] != n.Number[0] {
return false
}
if len(nn) == IPv6Uint32Count {
return nn[1]&n.Mask[1] == n.Number[1] && nn[2]&n.Mask[2] == n.Number[2] && nn[3]&n.Mask[3] == n.Number[3]
}
return true
}
// Contains returns true if Network covers o, false otherwise
func (n Network) Covers(o Network) bool {
if len(n.Number) != len(o.Number) {
return false
}
nMaskSize, _ := n.IPNet.Mask.Size()
oMaskSize, _ := o.IPNet.Mask.Size()
return n.Contains(o.Number) && nMaskSize <= oMaskSize
}
// LeastCommonBitPosition returns the smallest position of the preceding common
// bits of the 2 networks, and returns an error ErrNoGreatestCommonBit
// if the two network number diverges from the first bit.
func (n Network) LeastCommonBitPosition(n1 Network) (uint, error) {
maskSize, _ := n.IPNet.Mask.Size()
if maskSize1, _ := n1.IPNet.Mask.Size(); maskSize1 < maskSize {
maskSize = maskSize1
}
maskPosition := len(n1.Number)*BitsPerUint32 - maskSize
lcb, err := n.Number.LeastCommonBitPosition(n1.Number)
if err != nil {
return 0, err
}
return uint(math.Max(float64(maskPosition), float64(lcb))), nil
}
// Equal is the equality test for 2 networks.
func (n Network) Equal(n1 Network) bool {
return n.String() == n1.String()
}
func (n Network) String() string {
return n.IPNet.String()
}
// NetworkNumberMask is an IP address.
type NetworkNumberMask NetworkNumber
// Mask returns a new masked NetworkNumber from given NetworkNumber.
func (m NetworkNumberMask) Mask(n NetworkNumber) (NetworkNumber, error) {
if len(m) != len(n) {
return nil, ErrVersionMismatch
}
result := make(NetworkNumber, len(m))
result[0] = m[0] & n[0]
if len(m) == IPv6Uint32Count {
result[1] = m[1] & n[1]
result[2] = m[2] & n[2]
result[3] = m[3] & n[3]
}
return result, nil
}
// NextIP returns the next sequential ip.
func NextIP(ip net.IP) net.IP {
return NewNetworkNumber(ip).Next().ToIP()
}
// PreviousIP returns the previous sequential ip.
func PreviousIP(ip net.IP) net.IP {
return NewNetworkNumber(ip).Previous().ToIP()
}
|