1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
package build_test
import (
"fmt"
"github.com/yourbasic/graph"
"github.com/yourbasic/graph/build"
"math"
)
// Find a shortest path going back and forth between
// two sets of points in the plane.
func Example_euclid() {
type Point struct{ x, y int }
// Euclidean distance.
Euclid := func(p, q Point) float64 {
xd := p.x - q.x
yd := p.y - q.y
return math.Sqrt(float64(xd*xd + yd*yd))
}
// 0 3
// 1 4
// 2 5
points := []Point{
{0, 0}, {0, 1}, {0, 2},
{4, 0}, {4, 1}, {4, 2},
}
// Build a complete bipartite graph, connecting the three
// left-hand points to the three points on the right,
// and then apply a cost function to the edges of the graph.
g := build.Kmn(3, 3).AddCostFunc(func(v, w int) int64 {
// Distance to three decimal places.
return int64(1000 * Euclid(points[v], points[w]))
})
// Find a shortest path from 0 to 2.
path, dist := graph.ShortestPath(g, 0, 2)
fmt.Println("path:", path, "length:", float64(dist)/1000)
// Output:
// path: [0 4 2] length: 8.246
}
// Find a maximum flow in a virtual grid graph.
func Example_maxflow() {
// Build an undirected n×n grid with a silly edge cost.
n := 10
grid := build.Grid(n, n).AddCostFunc(func(v, w int) int64 {
return int64((v + w) * (w - v))
})
// Keep only the forward-pointing edges.
grid = grid.Keep(func(v, w int) bool { return v < w })
// Join the top row, 0..n-1, of the grid to a source S.
// The vertex in S will get index n*n in the new graph.
// The new edges should point from S to the grid.
// Give the new edges maximum capacity.
S := build.Empty(1)
grid_S := grid.Join(S, build.EdgeSet{
From: build.Range(0, n),
To: build.Vertex(n * n),
Keep: func(v, w int) bool { return v > w },
Cost: build.Cost(graph.Max),
})
// Join the bottom row, n*(n-1)..n*n-1, of the grid to a sink T.
// The vertex in T will get index n*n+1 in the new graph.
// The new edges should point from the grid to T.
// Give the new edges maximum capacity.
T := build.Empty(1)
grid_S_T := grid_S.Join(T, build.EdgeSet{
From: build.Range(n*(n-1), n*n),
To: build.Vertex(n*n + 1),
Keep: func(v, w int) bool { return v < w },
Cost: build.Cost(graph.Max),
})
// Find the maximum flow from S to T.
flow, _ := graph.MaxFlow(grid_S_T, n*n, n*n+1)
fmt.Println(flow)
// Output: 1900
}
// Filter a graph with a function.
func ExampleVirtual_Keep() {
// The complete graph with four vertices.
Kn4 := build.Kn(4)
fmt.Println(Kn4)
// Remove all edges incident with vertex 0.
Kn4MinusZero := Kn4.Keep(func(v, w int) bool { return v != 0 && w != 0 })
fmt.Println(Kn4MinusZero)
// Output:
// 4 [{0 1} {0 2} {0 3} {1 2} {1 3} {2 3}]
// 4 [{1 2} {1 3} {2 3}]
}
// Compute the difference of two graphs.
func ExampleVirtual_Intersect() {
// The complete graph with four vertices.
Kn4 := build.Kn(4)
fmt.Println(Kn4)
// The circle graph with four vertices.
Cn4 := build.Cycle(4)
fmt.Println(Cn4)
// Remove all edges belonging to Cn4 from Kn4.
Kn4DiffCn4 := Kn4.Intersect(Cn4.Complement())
fmt.Println(Kn4DiffCn4)
// Output:
// 4 [{0 1} {0 2} {0 3} {1 2} {1 3} {2 3}]
// 4 [{0 1} {0 3} {1 2} {2 3}]
// 4 [{0 2} {1 3}]
}
// Build a weighted barbell graph.
func ExampleVirtual_Connect_barbell() {
// The n-barbell graph consists of two non-overlapping n-vertex cliques
// together with a single edge that has an endpoint in each clique.
n := 2
bar := build.Grid(1, 2).AddCost(20)
redPlate := build.Kn(n).AddCost(25)
// Connect one plate to each end of the bar.
barbell := bar.Connect(0, redPlate).Connect(1, redPlate)
fmt.Println(barbell)
// Output: 4 [{0 1}:20 {0 2}:25 {1 3}:25]
}
// Build a wheel graph.
func ExampleVirtual_Join_wheel() {
// A wheel graph is a graph formed by joining a single vertex
// to all vertices of a cycle.
n := 32
hub := build.Empty(1)
rim := build.Cycle(n)
wheel := hub.Join(rim, build.AllEdges())
fmt.Println("Number of spokes:", wheel.Degree(0))
// Output:
// Number of spokes: 32
}
// Build a Petersen graph.
func ExampleVirtual_Match_petersen() {
// The Petersen graph is most commonly drawn as a pentagon
// with a pentagram inside, with five spokes.
pentagon := build.Cycle(5)
pentagram := pentagon.Complement()
petersen := pentagon.Match(pentagram, build.AllEdges())
fmt.Println(petersen)
// Output:
// 10 [{0 1} {0 4} {0 5} {1 2} {1 6} {2 3} {2 7} {3 4} {3 8} {4 9} {5 7} {5 8} {6 8} {6 9} {7 9}]
}
// Build a crown graph by multiplying Kₙ with K₂.
func ExampleVirtual_Tensor() {
// The tensor product G × K₂ is a bipartite graph called the bipartite double cover of G.
// A crown graph on 2n vertices is an undirected graph with two sets of vertices Uᵢ and Vⱼ
// and with an edge from Uᵢ to Vⱼ whenever i ≠ j.
// It can be computed as the bipartite double cover of Kn.
k4 := build.Kn(4)
crown8 := k4.Tensor(build.Kn(2))
fmt.Println(crown8)
// Output:
// 8 [{0 3} {0 5} {0 7} {1 2} {1 4} {1 6} {2 5} {2 7} {3 4} {3 6} {4 7} {5 6}]
}
// Build a cube graph by multiplying a single edge with itself.
func ExampleVirtual_Cartesian() {
edge := build.Grid(1, 2)
square := edge.Cartesian(edge)
cube := square.Cartesian(edge)
fmt.Println(edge)
fmt.Println(square)
fmt.Println(cube)
fmt.Println(graph.Equal(edge, build.Hyper(1)))
fmt.Println(graph.Equal(square, build.Hyper(2)))
fmt.Println(graph.Equal(cube, build.Hyper(3)))
// Output:
// 2 [{0 1}]
// 4 [{0 1} {0 2} {1 3} {2 3}]
// 8 [{0 1} {0 2} {0 4} {1 3} {1 5} {2 3} {2 6} {3 7} {4 5} {4 6} {5 7} {6 7}]
// true
// true
// true
}
// Build a cube graph.
func ExampleVirtual_Match_cube() {
// Build a cube graph.
square := build.Grid(2, 2)
cube := square.Match(square, build.AllEdges())
fmt.Println(cube)
fmt.Println(graph.Equal(cube, build.Hyper(3)))
// Output:
// 8 [{0 1} {0 2} {0 4} {1 3} {1 5} {2 3} {2 6} {3 7} {4 5} {4 6} {5 7} {6 7}]
// true
}
// Build a directed graph containing all edges (v, w) for which v is odd and w even.
func ExampleGeneric() {
// Define a graph by a function.
g := build.Generic(10, func(v, w int) bool {
// Include all edges with v odd and w even.
return v%2 == 1 && w%2 == 0
})
// In a topological ordering of this graph,
// odd numbered vertices must come before even.
order, acyclic := graph.TopSort(g)
fmt.Println("Acyclic:", acyclic)
fmt.Println(order)
// Output:
// Acyclic: true
// [1 3 5 7 9 0 2 4 6 8]
}
|