1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
package graph
// EulerDirected returns an Euler walk in a directed graph.
// If no such walk exists, it returns an empty walk and sets ok to false.
func EulerDirected(g Iterator) (walk []int, ok bool) {
n := g.Order()
degree := make([]int, n) // outdegree - indegree for each vertex
edgeCount := 0
for v := range degree {
g.Visit(v, func(w int, _ int64) (skip bool) {
edgeCount++
degree[v]++
degree[w]--
return
})
}
if edgeCount == 0 {
return []int{}, true
}
start, end := -1, -1
for v := range degree {
switch {
case degree[v] == 0:
case degree[v] == 1 && start == -1:
start = v
case degree[v] == -1 && end == -1:
end = v
default:
return []int{}, false
}
}
// Make a copy of g
h := make([][]int, n)
for v := range h {
g.Visit(v, func(w int, _ int64) (skip bool) {
h[v] = append(h[v], w)
return
})
}
// Find a starting point with neighbors.
if start == -1 {
for v, neighbors := range h {
if len(neighbors) > 0 {
start = v
break
}
}
}
for stack := []int{start}; len(stack) > 0; {
n := len(stack)
v := stack[n-1]
stack = stack[:n-1]
for len(h[v]) > 0 {
stack = append(stack, v)
v, h[v] = h[v][0], h[v][1:]
edgeCount--
}
walk = append(walk, v)
}
if edgeCount > 0 {
return []int{}, false
}
for i, j := 0, len(walk)-1; i < j; i, j = i+1, j-1 {
walk[i], walk[j] = walk[j], walk[i]
}
return walk, true
}
// EulerUndirected returns an Euler walk following undirected edges
// in only one direction. If no such walk exists, it returns an empty walk
// and sets ok to false.
func EulerUndirected(g Iterator) (walk []int, ok bool) {
n := g.Order()
out := make([]int, n) // outdegree for each vertex
edgeCount := 0
for v := range out {
g.Visit(v, func(w int, _ int64) (skip bool) {
edgeCount++
if v != w {
out[v]++
}
return
})
}
if edgeCount == 0 {
return []int{}, true
}
start, oddDeg := -1, 0
for v := range out {
if out[v]&1 == 1 {
start = v
oddDeg++
}
}
if !(oddDeg == 0 || oddDeg == 2) {
return []int{}, false
}
// Find a starting point with neighbors.
if start == -1 {
for v := 0; v < n; v++ {
if g.Visit(v, func(w int, _ int64) (skip bool) {
start = w
return true
}) {
break
}
}
}
h := Copy(g)
for stack := []int{start}; len(stack) > 0; {
n := len(stack)
v := stack[n-1]
stack = stack[:n-1]
for h.Degree(v) > 0 {
stack = append(stack, v)
var w int
h.Visit(v, func(u int, _ int64) (skip bool) {
w = u
return true
})
h.DeleteBoth(v, w)
edgeCount--
if v != w {
edgeCount--
}
v = w
}
walk = append(walk, v)
}
if edgeCount > 0 {
return []int{}, false
}
return walk, true
}
|