1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package dsa implements the Digital Signature Algorithm, as defined in FIPS 186-3.
//
// The DSA operations in this package are not implemented using constant-time algorithms.
//
// Warning: DSA is a legacy algorithm, and modern alternatives such as
// Ed25519 (implemented by package crypto/ed25519) should be used instead. Keys
// with 1024-bit moduli (L1024N160 parameters) are cryptographically weak, while
// bigger keys are not widely supported. Note that FIPS 186-5 no longer approves
// DSA for signature generation.
package dsa
import (
"errors"
"io"
"math/big"
"github.com/zmap/zcrypto/internal/randutil"
)
// Parameters represents the domain parameters for a key. These parameters can
// be shared across many keys. The bit length of Q must be a multiple of 8.
type Parameters struct {
P, Q, G *big.Int
}
// PublicKey represents a DSA public key.
type PublicKey struct {
Parameters
Y *big.Int
}
// PrivateKey represents a DSA private key.
type PrivateKey struct {
PublicKey
X *big.Int
}
// ErrInvalidPublicKey results when a public key is not usable by this code.
// FIPS is quite strict about the format of DSA keys, but other code may be
// less so. Thus, when using keys which may have been generated by other code,
// this error must be handled.
var ErrInvalidPublicKey = errors.New("crypto/dsa: invalid public key")
// ParameterSizes is an enumeration of the acceptable bit lengths of the primes
// in a set of DSA parameters. See FIPS 186-3, section 4.2.
type ParameterSizes int
const (
L1024N160 ParameterSizes = iota
L2048N224
L2048N256
L3072N256
)
// numMRTests is the number of Miller-Rabin primality tests that we perform. We
// pick the largest recommended number from table C.1 of FIPS 186-3.
const numMRTests = 64
// GenerateParameters puts a random, valid set of DSA parameters into params.
// This function can take many seconds, even on fast machines.
func GenerateParameters(params *Parameters, rand io.Reader, sizes ParameterSizes) error {
// This function doesn't follow FIPS 186-3 exactly in that it doesn't
// use a verification seed to generate the primes. The verification
// seed doesn't appear to be exported or used by other code and
// omitting it makes the code cleaner.
var L, N int
switch sizes {
case L1024N160:
L = 1024
N = 160
case L2048N224:
L = 2048
N = 224
case L2048N256:
L = 2048
N = 256
case L3072N256:
L = 3072
N = 256
default:
return errors.New("crypto/dsa: invalid ParameterSizes")
}
qBytes := make([]byte, N/8)
pBytes := make([]byte, L/8)
q := new(big.Int)
p := new(big.Int)
rem := new(big.Int)
one := new(big.Int)
one.SetInt64(1)
GeneratePrimes:
for {
if _, err := io.ReadFull(rand, qBytes); err != nil {
return err
}
qBytes[len(qBytes)-1] |= 1
qBytes[0] |= 0x80
q.SetBytes(qBytes)
if !q.ProbablyPrime(numMRTests) {
continue
}
for i := 0; i < 4*L; i++ {
if _, err := io.ReadFull(rand, pBytes); err != nil {
return err
}
pBytes[len(pBytes)-1] |= 1
pBytes[0] |= 0x80
p.SetBytes(pBytes)
rem.Mod(p, q)
rem.Sub(rem, one)
p.Sub(p, rem)
if p.BitLen() < L {
continue
}
if !p.ProbablyPrime(numMRTests) {
continue
}
params.P = p
params.Q = q
break GeneratePrimes
}
}
h := new(big.Int)
h.SetInt64(2)
g := new(big.Int)
pm1 := new(big.Int).Sub(p, one)
e := new(big.Int).Div(pm1, q)
for {
g.Exp(h, e, p)
if g.Cmp(one) == 0 {
h.Add(h, one)
continue
}
params.G = g
return nil
}
}
// GenerateKey generates a public&private key pair. The Parameters of the
// PrivateKey must already be valid (see GenerateParameters).
func GenerateKey(priv *PrivateKey, rand io.Reader) error {
if priv.P == nil || priv.Q == nil || priv.G == nil {
return errors.New("crypto/dsa: parameters not set up before generating key")
}
x := new(big.Int)
xBytes := make([]byte, priv.Q.BitLen()/8)
for {
_, err := io.ReadFull(rand, xBytes)
if err != nil {
return err
}
x.SetBytes(xBytes)
if x.Sign() != 0 && x.Cmp(priv.Q) < 0 {
break
}
}
priv.X = x
priv.Y = new(big.Int)
priv.Y.Exp(priv.G, x, priv.P)
return nil
}
// fermatInverse calculates the inverse of k in GF(P) using Fermat's method.
// This has better constant-time properties than Euclid's method (implemented
// in math/big.Int.ModInverse) although math/big itself isn't strictly
// constant-time so it's not perfect.
func fermatInverse(k, P *big.Int) *big.Int {
two := big.NewInt(2)
pMinus2 := new(big.Int).Sub(P, two)
return new(big.Int).Exp(k, pMinus2, P)
}
// Sign signs an arbitrary length hash (which should be the result of hashing a
// larger message) using the private key, priv. It returns the signature as a
// pair of integers. The security of the private key depends on the entropy of
// rand.
//
// Note that FIPS 186-3 section 4.6 specifies that the hash should be truncated
// to the byte-length of the subgroup. This function does not perform that
// truncation itself.
//
// Be aware that calling Sign with an attacker-controlled PrivateKey may
// require an arbitrary amount of CPU.
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
randutil.MaybeReadByte(rand)
// FIPS 186-3, section 4.6
n := priv.Q.BitLen()
if priv.Q.Sign() <= 0 || priv.P.Sign() <= 0 || priv.G.Sign() <= 0 || priv.X.Sign() <= 0 || n%8 != 0 {
err = ErrInvalidPublicKey
return
}
n >>= 3
var attempts int
for attempts = 10; attempts > 0; attempts-- {
k := new(big.Int)
buf := make([]byte, n)
for {
_, err = io.ReadFull(rand, buf)
if err != nil {
return
}
k.SetBytes(buf)
// priv.Q must be >= 128 because the test above
// requires it to be > 0 and that
// ceil(log_2(Q)) mod 8 = 0
// Thus this loop will quickly terminate.
if k.Sign() > 0 && k.Cmp(priv.Q) < 0 {
break
}
}
kInv := fermatInverse(k, priv.Q)
r = new(big.Int).Exp(priv.G, k, priv.P)
r.Mod(r, priv.Q)
if r.Sign() == 0 {
continue
}
z := k.SetBytes(hash)
s = new(big.Int).Mul(priv.X, r)
s.Add(s, z)
s.Mod(s, priv.Q)
s.Mul(s, kInv)
s.Mod(s, priv.Q)
if s.Sign() != 0 {
break
}
}
// Only degenerate private keys will require more than a handful of
// attempts.
if attempts == 0 {
return nil, nil, ErrInvalidPublicKey
}
return
}
// Verify verifies the signature in r, s of hash using the public key, pub. It
// reports whether the signature is valid.
//
// Note that FIPS 186-3 section 4.6 specifies that the hash should be truncated
// to the byte-length of the subgroup. This function does not perform that
// truncation itself.
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
// FIPS 186-3, section 4.7
if pub.P.Sign() == 0 {
return false
}
if r.Sign() < 1 || r.Cmp(pub.Q) >= 0 {
return false
}
if s.Sign() < 1 || s.Cmp(pub.Q) >= 0 {
return false
}
w := new(big.Int).ModInverse(s, pub.Q)
if w == nil {
return false
}
n := pub.Q.BitLen()
if n%8 != 0 {
return false
}
z := new(big.Int).SetBytes(hash)
u1 := new(big.Int).Mul(z, w)
u1.Mod(u1, pub.Q)
u2 := w.Mul(r, w)
u2.Mod(u2, pub.Q)
v := u1.Exp(pub.G, u1, pub.P)
u2.Exp(pub.Y, u2, pub.P)
v.Mul(v, u2)
v.Mod(v, pub.P)
v.Mod(v, pub.Q)
return v.Cmp(r) == 0
}
|