File: key_agreement.go

package info (click to toggle)
golang-github-zmap-zcrypto 0.0~git20240512.0fef58d-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 6,856 kB
  • sloc: python: 567; sh: 124; makefile: 9
file content (787 lines) | stat: -rw-r--r-- 25,660 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package tls

import (
	"crypto"
	"crypto/ecdsa"
	"crypto/elliptic"
	"crypto/md5"
	"crypto/rand"
	"crypto/rsa"
	"crypto/sha1"
	"crypto/sha256"
	"crypto/sha512"
	"encoding/asn1"
	"errors"
	"io"
	"math/big"

	"github.com/zmap/zcrypto/dsa"

	"github.com/zmap/zcrypto/x509"
)

var errClientKeyExchange = errors.New("tls: invalid ClientKeyExchange message")
var errServerKeyExchange = errors.New("tls: invalid ServerKeyExchange message")
var errUnexpectedServerKeyExchange = errors.New("tls: unexpected ServerKeyExchange message")

// rsaKeyAgreement implements the standard TLS key agreement where the client
// encrypts the pre-master secret to the server's public key.
type rsaKeyAgreement struct {
	auth          keyAgreementAuthentication
	version       uint16
	clientVersion uint16
	ephemeral     bool
	privateKey    *rsa.PrivateKey
	publicKey     *rsa.PublicKey
	verifyError   error
}

func (ka *rsaKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
	// Only send a server key agreement when the cipher is an RSA export
	// TODO: Make this a configuration parameter
	ka.clientVersion = clientHello.vers
	if !ka.ephemeral {
		return nil, nil
	}

	// Generate an ephemeral RSA key or use the one in the config
	if config.ExportRSAKey != nil {
		ka.privateKey = config.ExportRSAKey
	} else {
		key, err := rsa.GenerateKey(config.rand(), 512)
		if err != nil {
			return nil, err
		}
		ka.privateKey = key
	}

	// Serialize the key parameters to a nice byte array. The byte array can be
	// positioned later.
	modulus := ka.privateKey.N.Bytes()
	exponent := big.NewInt(int64(ka.privateKey.E)).Bytes()
	serverRSAParams := make([]byte, 0, 2+len(modulus)+2+len(exponent))
	serverRSAParams = append(serverRSAParams, byte(len(modulus)>>8), byte(len(modulus)))
	serverRSAParams = append(serverRSAParams, modulus...)
	serverRSAParams = append(serverRSAParams, byte(len(exponent)>>8), byte(len(exponent)))
	serverRSAParams = append(serverRSAParams, exponent...)

	return ka.auth.signParameters(config, cert, clientHello, hello, serverRSAParams)
}

func (ka *rsaKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg) ([]byte, error) {
	preMasterSecret := make([]byte, 48)
	_, err := io.ReadFull(config.rand(), preMasterSecret[2:])
	if err != nil {
		return nil, err
	}

	if len(ckx.ciphertext) < 2 {
		return nil, errClientKeyExchange
	}

	ciphertext := ckx.ciphertext
	if ka.version != VersionSSL30 {
		ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1])
		if ciphertextLen != len(ckx.ciphertext)-2 {
			return nil, errClientKeyExchange
		}
		ciphertext = ckx.ciphertext[2:]
	}

	key := ka.privateKey
	if key == nil {
		key = cert.PrivateKey.(*rsa.PrivateKey)
	}

	err = rsa.DecryptPKCS1v15SessionKey(config.rand(), key, ciphertext, preMasterSecret)
	if err != nil {
		return nil, err
	}
	// We don't check the version number in the premaster secret.  For one,
	// by checking it, we would leak information about the validity of the
	// encrypted pre-master secret. Secondly, it provides only a small
	// benefit against a downgrade attack and some implementations send the
	// wrong version anyway. See the discussion at the end of section
	// 7.4.7.1 of RFC 4346.
	return preMasterSecret, nil
}

func (ka *rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
	if !ka.ephemeral {
		return nil
	}

	k := skx.key
	// Read the modulus
	if len(k) < 2 {
		return errServerKeyExchange
	}
	modulusLen := (int(k[0]) << 8) | int(k[1])
	k = k[2:]
	if len(k) < modulusLen {
		return errServerKeyExchange
	}
	modulus := new(big.Int).SetBytes(k[:modulusLen])
	k = k[modulusLen:]

	// Read the exponent
	if len(k) < 2 {
		return errServerKeyExchange
	}
	exponentLength := (int(k[0]) << 8) | int(k[1])
	k = k[2:]
	if len(k) < exponentLength || exponentLength > 4 {
		return errServerKeyExchange
	}
	rawExponent := k[0:exponentLength]
	exponent := 0
	for _, b := range rawExponent {
		exponent <<= 8
		exponent |= int(b)
	}
	ka.publicKey = new(rsa.PublicKey)
	ka.publicKey.E = exponent
	ka.publicKey.N = modulus

	paramsLen := 2 + exponentLength + 2 + modulusLen

	serverRSAParams := skx.key[:paramsLen]
	sig := skx.key[paramsLen:]

	skx.digest, ka.verifyError = ka.auth.verifyParameters(config, clientHello, serverHello, cert, serverRSAParams, sig)
	if config.InsecureSkipVerify {
		return nil
	}
	return ka.verifyError
}

func (ka *rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
	preMasterSecret := make([]byte, 48)
	preMasterSecret[0] = byte(clientHello.vers >> 8)
	preMasterSecret[1] = byte(clientHello.vers)
	_, err := io.ReadFull(config.rand(), preMasterSecret[2:])
	if err != nil {
		return nil, nil, err
	}
	var publicKey *rsa.PublicKey
	if ka.publicKey != nil {
		publicKey = ka.publicKey
	} else {
		var ok bool
		publicKey, ok = cert.PublicKey.(*rsa.PublicKey)
		if !ok {
			return nil, nil, errClientKeyExchange
		}
	}
	encrypted, err := rsa.EncryptPKCS1v15(config.rand(), publicKey, preMasterSecret)
	if err != nil {
		return nil, nil, err
	}
	ckx := new(clientKeyExchangeMsg)
	var body []byte
	if ka.version != VersionSSL30 {
		ckx.ciphertext = make([]byte, len(encrypted)+2)
		ckx.ciphertext[0] = byte(len(encrypted) >> 8)
		ckx.ciphertext[1] = byte(len(encrypted))
		body = ckx.ciphertext[2:]
	} else {
		ckx.ciphertext = make([]byte, len(encrypted))
		body = ckx.ciphertext
	}
	copy(body, encrypted)
	return preMasterSecret, ckx, nil
}

// sha1Hash calculates a SHA1 hash over the given byte slices.
func md5Hash(slices [][]byte) []byte {
	h := md5.New()
	for _, slice := range slices {
		h.Write(slice)
	}
	return h.Sum(nil)
}

// sha1Hash calculates a SHA1 hash over the given byte slices.
func sha1Hash(slices [][]byte) []byte {
	hsha1 := sha1.New()
	for _, slice := range slices {
		hsha1.Write(slice)
	}
	return hsha1.Sum(nil)
}

// md5SHA1Hash implements TLS 1.0's hybrid hash function which consists of the
// concatenation of an MD5 and SHA1 hash.
func md5SHA1Hash(slices [][]byte) []byte {
	md5sha1 := make([]byte, md5.Size+sha1.Size)
	hmd5 := md5.New()
	for _, slice := range slices {
		hmd5.Write(slice)
	}
	copy(md5sha1, hmd5.Sum(nil))
	copy(md5sha1[md5.Size:], sha1Hash(slices))
	return md5sha1
}

// sha224Hash implements TLS 1.2's hash function.
func sha224Hash(slices [][]byte) []byte {
	h := crypto.SHA224.New()
	for _, slice := range slices {
		h.Write(slice)
	}
	return h.Sum(nil)
}

// sha256Hash implements TLS 1.2's hash function.
func sha256Hash(slices [][]byte) []byte {
	h := sha256.New()
	for _, slice := range slices {
		h.Write(slice)
	}
	return h.Sum(nil)
}

// sha256Hash implements TLS 1.2's hash function.
func sha384Hash(slices [][]byte) []byte {
	h := crypto.SHA384.New()
	for _, slice := range slices {
		h.Write(slice)
	}
	return h.Sum(nil)
}

// sha512Hash implements TLS 1.2's hash function.
func sha512Hash(slices [][]byte) []byte {
	h := sha512.New()
	for _, slice := range slices {
		h.Write(slice)
	}
	return h.Sum(nil)
}

// hashForServerKeyExchange hashes the given slices and returns their digest
// and the identifier of the hash function used. The hashFunc argument is only
// used for >= TLS 1.2 and precisely identifies the hash function to use.
func hashForServerKeyExchange(sigType, hashFunc uint8, version uint16, slices ...[]byte) ([]byte, crypto.Hash, error) {
	if version >= VersionTLS12 {
		switch hashFunc {
		case hashSHA512:
			return sha512Hash(slices), crypto.SHA512, nil
		case hashSHA384:
			return sha384Hash(slices), crypto.SHA384, nil
		case hashSHA256:
			return sha256Hash(slices), crypto.SHA256, nil
		case hashSHA224:
			return sha224Hash(slices), crypto.SHA224, nil
		case hashSHA1:
			return sha1Hash(slices), crypto.SHA1, nil
		case hashMD5:
			return md5Hash(slices), crypto.MD5, nil
		default:
			return nil, crypto.Hash(0), errors.New("tls: unknown hash function used by peer")
		}
	}
	if sigType == signatureECDSA || sigType == signatureDSA {
		return sha1Hash(slices), crypto.SHA1, nil
	}
	return md5SHA1Hash(slices), crypto.MD5SHA1, nil
}

// pickTLS12HashForSignature returns a TLS 1.2 hash identifier for signing a
// ServerKeyExchange given the signature type being used and the client's
// advertised list of supported signature and hash combinations.
func pickTLS12HashForSignature(sigType uint8, clientList, serverList []SigAndHash) (uint8, error) {
	if len(clientList) == 0 {
		// If the client didn't specify any signature_algorithms
		// extension then we can assume that it supports SHA1. See
		// http://tools.ietf.org/html/rfc5246#section-7.4.1.4.1
		return hashSHA1, nil
	}

	for _, sigAndHash := range clientList {
		if sigAndHash.Signature != sigType {
			continue
		}
		if isSupportedSignatureAndHash(sigAndHash, serverList) {
			return sigAndHash.Hash, nil
		}
	}

	return 0, errors.New("tls: client doesn't support any common hash functions")
}

func curveForCurveID(id CurveID) (elliptic.Curve, bool) {
	switch id {
	case CurveP256:
		return elliptic.P256(), true
	case CurveP384:
		return elliptic.P384(), true
	case CurveP521:
		return elliptic.P521(), true
	default:
		return nil, false
	}
}

// keyAgreementAuthentication is a helper interface that specifies how
// to authenticate the ServerKeyExchange parameters.
type keyAgreementAuthentication interface {
	signParameters(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, params []byte) (*serverKeyExchangeMsg, error)
	verifyParameters(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, params []byte, sig []byte) ([]byte, error)
}

// nilKeyAgreementAuthentication does not authenticate the key
// agreement parameters.
type nilKeyAgreementAuthentication struct{}

func (ka *nilKeyAgreementAuthentication) signParameters(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, params []byte) (*serverKeyExchangeMsg, error) {
	skx := new(serverKeyExchangeMsg)
	skx.key = params
	return skx, nil
}

func (ka *nilKeyAgreementAuthentication) verifyParameters(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, params []byte, sig []byte) ([]byte, error) {
	return nil, nil
}

// signedKeyAgreement signs the ServerKeyExchange parameters with the
// server's private key.
type signedKeyAgreement struct {
	version uint16
	sigType uint8
	raw     []byte
	valid   bool
	sh      SigAndHash
}

func (ka *signedKeyAgreement) signParameters(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, params []byte) (*serverKeyExchangeMsg, error) {
	var tls12HashId uint8
	var err error
	if ka.version >= VersionTLS12 {
		if tls12HashId, err = pickTLS12HashForSignature(ka.sigType, clientHello.signatureAndHashes, config.signatureAndHashesForServer()); err != nil {
			return nil, err
		}
		ka.sh.Hash = tls12HashId
	}
	ka.sh.Signature = ka.sigType
	digest, hashFunc, err := hashForServerKeyExchange(ka.sigType, tls12HashId, ka.version, clientHello.random, hello.random, params)
	if err != nil {
		return nil, err
	}
	var sig []byte
	switch ka.sigType {
	case signatureECDSA:
		privKey, ok := cert.PrivateKey.(*ecdsa.PrivateKey)
		if !ok {
			return nil, errors.New("ECDHE ECDSA requires an ECDSA server private key")
		}
		r, s, err := ecdsa.Sign(config.rand(), privKey, digest)
		if err != nil {
			return nil, errors.New("failed to sign ECDHE parameters: " + err.Error())
		}
		sig, err = asn1.Marshal(ecdsaSignature{r, s})
		if err != nil {
			return nil, errors.New("failed to marshal ECDSA signature: " + err.Error())
		}
	case signatureRSA:
		privKey, ok := cert.PrivateKey.(*rsa.PrivateKey)
		if !ok {
			return nil, errors.New("ECDHE RSA requires a RSA server private key")
		}
		sig, err = rsa.SignPKCS1v15(config.rand(), privKey, hashFunc, digest)
		if err != nil {
			return nil, errors.New("failed to sign ECDHE parameters: " + err.Error())
		}
	default:
		return nil, errors.New("unknown ECDHE signature algorithm")
	}

	skx := new(serverKeyExchangeMsg)
	skx.digest = digest
	sigAndHashLen := 0
	if ka.version >= VersionTLS12 {
		sigAndHashLen = 2
	}
	skx.key = make([]byte, len(params)+sigAndHashLen+2+len(sig))
	copy(skx.key, params)
	k := skx.key[len(params):]
	if ka.version >= VersionTLS12 {
		k[0] = tls12HashId
		k[1] = ka.sigType
		k = k[2:]
	}
	k[0] = byte(len(sig) >> 8)
	k[1] = byte(len(sig))
	copy(k[2:], sig)
	ka.raw = sig
	ka.valid = true // We (the server) signed
	return skx, nil
}

func (ka *signedKeyAgreement) verifyParameters(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, params []byte, sig []byte) ([]byte, error) {
	if len(sig) < 2 {
		return nil, errServerKeyExchange
	}

	var tls12HashId uint8
	if ka.version >= VersionTLS12 {
		// handle SignatureAndHashAlgorithm
		var sigAndHash []uint8
		sigAndHash, sig = sig[:2], sig[2:]
		tls12HashId = sigAndHash[0]
		ka.sh.Hash = tls12HashId
		ka.sh.Signature = sigAndHash[1]
		if sigAndHash[1] != ka.sigType {
			return nil, errServerKeyExchange
		}
		if len(sig) < 2 {
			return nil, errServerKeyExchange
		}

		if !isSupportedSignatureAndHash(SigAndHash{ka.sigType, tls12HashId}, config.signatureAndHashesForClient()) {
			return nil, errors.New("tls: unsupported hash function for ServerKeyExchange")
		}
	}
	sigLen := int(sig[0])<<8 | int(sig[1])
	if sigLen+2 != len(sig) {
		return nil, errServerKeyExchange
	}
	sig = sig[2:]
	ka.raw = sig

	digest, hashFunc, err := hashForServerKeyExchange(ka.sigType, tls12HashId, ka.version, clientHello.random, serverHello.random, params)
	if err != nil {
		return nil, err
	}
	switch ka.sigType {
	case signatureECDSA:
		augECDSA, ok := cert.PublicKey.(*x509.AugmentedECDSA)
		if !ok {
			return digest, errors.New("ECDHE ECDSA: could not covert cert.PublicKey to x509.AugmentedECDSA")
		}
		pubKey := augECDSA.Pub
		ecdsaSig := new(ecdsaSignature)
		if _, err := asn1.Unmarshal(sig, ecdsaSig); err != nil {
			return digest, err
		}
		if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 {
			return digest, errors.New("ECDSA signature contained zero or negative values")
		}
		if !ecdsa.Verify(pubKey, digest, ecdsaSig.R, ecdsaSig.S) {
			return digest, errors.New("ECDSA verification failure")
		}
	case signatureRSA:
		pubKey, ok := cert.PublicKey.(*rsa.PublicKey)
		if !ok {
			return digest, errors.New("ECDHE RSA requires a RSA server public key")
		}
		if err := rsa.VerifyPKCS1v15(pubKey, hashFunc, digest, sig); err != nil {
			return digest, err
		}
	case signatureDSA:
		pubKey, ok := cert.PublicKey.(*dsa.PublicKey)
		if !ok {
			return digest, errors.New("DSS ciphers require a DSA server public key")
		}
		dsaSig := new(dsaSignature)
		if _, err := asn1.Unmarshal(sig, dsaSig); err != nil {
			return digest, err
		}
		if dsaSig.R.Sign() <= 0 || dsaSig.S.Sign() <= 0 {
			return digest, errors.New("DSA signature contained zero or negative values")
		}
		if !dsa.Verify(pubKey, digest, dsaSig.R, dsaSig.S) {
			return digest, errors.New("DSA verification failure")
		}
	default:
		return digest, errors.New("unknown ECDHE signature algorithm")
	}
	ka.valid = true
	return digest, nil
}

// ecdheRSAKeyAgreement implements a TLS key agreement where the server
// generates a ephemeral EC public/private key pair and signs it. The
// pre-master secret is then calculated using ECDH. The signature may
// either be ECDSA or RSA.
type ecdheKeyAgreement struct {
	auth          keyAgreementAuthentication
	privateKey    []byte
	curve         elliptic.Curve
	x, y          *big.Int
	verifyError   error
	curveID       uint16
	clientPrivKey []byte
	serverPrivKey []byte
	clientX       *big.Int
	clientY       *big.Int
}

func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
	var curveid CurveID
	preferredCurves := config.curvePreferences()

NextCandidate:
	for _, candidate := range preferredCurves {
		for _, c := range clientHello.supportedCurves {
			if candidate == c {
				curveid = c
				break NextCandidate
			}
		}
	}

	if curveid == 0 {
		return nil, errors.New("tls: no supported elliptic curves offered")
	}
	ka.curveID = uint16(curveid)

	var ok bool
	if ka.curve, ok = curveForCurveID(curveid); !ok {
		return nil, errors.New("tls: preferredCurves includes unsupported curve")
	}

	var err error
	ka.privateKey, ka.x, ka.y, err = elliptic.GenerateKey(ka.curve, config.rand())
	if err != nil {
		return nil, err
	}
	ecdhePublic := elliptic.Marshal(ka.curve, ka.x, ka.y)

	ka.serverPrivKey = make([]byte, len(ka.privateKey))
	copy(ka.serverPrivKey, ka.privateKey)

	// http://tools.ietf.org/html/rfc4492#section-5.4
	serverECDHParams := make([]byte, 1+2+1+len(ecdhePublic))
	serverECDHParams[0] = 3 // named curve
	serverECDHParams[1] = byte(curveid >> 8)
	serverECDHParams[2] = byte(curveid)
	serverECDHParams[3] = byte(len(ecdhePublic))
	copy(serverECDHParams[4:], ecdhePublic)

	return ka.auth.signParameters(config, cert, clientHello, hello, serverECDHParams)
}

func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg) ([]byte, error) {
	if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 {
		return nil, errClientKeyExchange
	}
	ka.clientX, ka.clientY = elliptic.Unmarshal(ka.curve, ckx.ciphertext[1:])
	if ka.clientX == nil {
		return nil, errClientKeyExchange
	}

	sharedX, _ := ka.curve.ScalarMult(ka.clientX, ka.clientY, ka.privateKey)
	preMasterSecret := make([]byte, (ka.curve.Params().BitSize+7)>>3)
	xBytes := sharedX.Bytes()
	copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes)

	return preMasterSecret, nil
}

func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
	if len(skx.key) < 4 {
		return errServerKeyExchange
	}
	if skx.key[0] != 3 { // named curve
		return errors.New("tls: server selected unsupported curve")
	}
	curveid := CurveID(skx.key[1])<<8 | CurveID(skx.key[2])
	ka.curveID = uint16(curveid)

	var ok bool
	if ka.curve, ok = curveForCurveID(curveid); !ok {
		return errors.New("tls: server selected unsupported curve")
	}

	publicLen := int(skx.key[3])
	if publicLen+4 > len(skx.key) {
		return errServerKeyExchange
	}
	ka.x, ka.y = elliptic.Unmarshal(ka.curve, skx.key[4:4+publicLen])
	if ka.x == nil {
		return errServerKeyExchange
	}
	serverECDHParams := skx.key[:4+publicLen]

	sig := skx.key[4+publicLen:]
	skx.digest, ka.verifyError = ka.auth.verifyParameters(config, clientHello, serverHello, cert, serverECDHParams, sig)
	if config.InsecureSkipVerify {
		return nil
	}
	return ka.verifyError
}

func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
	if ka.curve == nil {
		return nil, nil, errors.New("missing ServerKeyExchange message")
	}
	priv, mx, my, err := elliptic.GenerateKey(ka.curve, config.rand())
	if err != nil {
		return nil, nil, err
	}

	ka.clientPrivKey = make([]byte, len(priv))
	copy(ka.clientPrivKey, priv)
	ka.clientX = mx
	ka.clientY = my

	x, _ := ka.curve.ScalarMult(ka.x, ka.y, priv)
	preMasterSecret := make([]byte, (ka.curve.Params().BitSize+7)>>3)
	xBytes := x.Bytes()
	copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes)

	serialized := elliptic.Marshal(ka.curve, mx, my)

	ckx := new(clientKeyExchangeMsg)
	var body []byte
	ckx.ciphertext = make([]byte, 1+len(serialized))
	ckx.ciphertext[0] = byte(len(serialized))
	body = ckx.ciphertext[1:]
	copy(body, serialized)

	return preMasterSecret, ckx, nil
}

// dheRSAKeyAgreement implements a TLS key agreement where the server generates
// an ephemeral Diffie-Hellman public/private key pair and signs it. The
// pre-master secret is then calculated using Diffie-Hellman.
type dheKeyAgreement struct {
	auth        keyAgreementAuthentication
	p, g        *big.Int
	yTheirs     *big.Int
	yOurs       *big.Int
	xOurs       *big.Int
	yServer     *big.Int
	yClient     *big.Int
	verifyError error
}

func (ka *dheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
	var q *big.Int
	// 2048-bit MODP Group with 256-bit Prime Order Subgroup (RFC
	// 5114, Section 2.3)
	// TODO: Take a prime in the config
	ka.p, _ = new(big.Int).SetString("87A8E61DB4B6663CFFBBD19C651959998CEEF608660DD0F25D2CEED4435E3B00E00DF8F1D61957D4FAF7DF4561B2AA3016C3D91134096FAA3BF4296D830E9A7C209E0C6497517ABD5A8A9D306BCF67ED91F9E6725B4758C022E0B1EF4275BF7B6C5BFC11D45F9088B941F54EB1E59BB8BC39A0BF12307F5C4FDB70C581B23F76B63ACAE1CAA6B7902D52526735488A0EF13C6D9A51BFA4AB3AD8347796524D8EF6A167B5A41825D967E144E5140564251CCACB83E6B486F6B3CA3F7971506026C0B857F689962856DED4010ABD0BE621C3A3960A54E710C375F26375D7014103A4B54330C198AF126116D2276E11715F693877FAD7EF09CADB094AE91E1A1597", 16)
	ka.g, _ = new(big.Int).SetString("3FB32C9B73134D0B2E77506660EDBD484CA7B18F21EF205407F4793A1A0BA12510DBC15077BE463FFF4FED4AAC0BB555BE3A6C1B0C6B47B1BC3773BF7E8C6F62901228F8C28CBB18A55AE31341000A650196F931C77A57F2DDF463E5E9EC144B777DE62AAAB8A8628AC376D282D6ED3864E67982428EBC831D14348F6F2F9193B5045AF2767164E1DFC967C1FB3F2E55A4BD1BFFE83B9C80D052B985D182EA0ADB2A3B7313D3FE14C8484B1E052588B9B7D2BBD2DF016199ECD06E1557CD0915B3353BBB64E0EC377FD028370DF92B52C7891428CDC67EB6184B523D1DB246C32F63078490F00EF8D647D148D47954515E2327CFEF98C582664B4C0F6CC41659", 16)
	q, _ = new(big.Int).SetString("8CF83642A709A097B447997640129DA299B1A47D1EB3750BA308B0FE64F5FBD3", 16)

	var err error
	ka.xOurs, err = rand.Int(config.rand(), q)
	if err != nil {
		return nil, err
	}
	yOurs := new(big.Int).Exp(ka.g, ka.xOurs, ka.p)
	ka.yOurs = yOurs
	ka.yServer = new(big.Int).Set(yOurs)

	// http://tools.ietf.org/html/rfc5246#section-7.4.3
	pBytes := ka.p.Bytes()
	gBytes := ka.g.Bytes()
	yBytes := yOurs.Bytes()
	serverDHParams := make([]byte, 0, 2+len(pBytes)+2+len(gBytes)+2+len(yBytes))
	serverDHParams = append(serverDHParams, byte(len(pBytes)>>8), byte(len(pBytes)))
	serverDHParams = append(serverDHParams, pBytes...)
	serverDHParams = append(serverDHParams, byte(len(gBytes)>>8), byte(len(gBytes)))
	serverDHParams = append(serverDHParams, gBytes...)
	serverDHParams = append(serverDHParams, byte(len(yBytes)>>8), byte(len(yBytes)))
	serverDHParams = append(serverDHParams, yBytes...)

	return ka.auth.signParameters(config, cert, clientHello, hello, serverDHParams)
}

func (ka *dheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg) ([]byte, error) {
	if len(ckx.ciphertext) < 2 {
		return nil, errClientKeyExchange
	}
	yLen := (int(ckx.ciphertext[0]) << 8) | int(ckx.ciphertext[1])
	if yLen != len(ckx.ciphertext)-2 {
		return nil, errClientKeyExchange
	}
	yTheirs := new(big.Int).SetBytes(ckx.ciphertext[2:])
	ka.yClient = new(big.Int).Set(yTheirs)
	if yTheirs.Sign() <= 0 || yTheirs.Cmp(ka.p) >= 0 {
		return nil, errClientKeyExchange
	}
	return new(big.Int).Exp(yTheirs, ka.xOurs, ka.p).Bytes(), nil
}

func (ka *dheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
	// Read dh_p
	k := skx.key
	if len(k) < 2 {
		return errServerKeyExchange
	}
	pLen := (int(k[0]) << 8) | int(k[1])
	k = k[2:]
	if len(k) < pLen {
		return errServerKeyExchange
	}
	ka.p = new(big.Int).SetBytes(k[:pLen])
	k = k[pLen:]

	// Read dh_g
	if len(k) < 2 {
		return errServerKeyExchange
	}
	gLen := (int(k[0]) << 8) | int(k[1])
	k = k[2:]
	if len(k) < gLen {
		return errServerKeyExchange
	}
	ka.g = new(big.Int).SetBytes(k[:gLen])
	k = k[gLen:]

	// Read dh_Ys
	if len(k) < 2 {
		return errServerKeyExchange
	}
	yLen := (int(k[0]) << 8) | int(k[1])
	k = k[2:]
	if len(k) < yLen {
		return errServerKeyExchange
	}
	ka.yTheirs = new(big.Int).SetBytes(k[:yLen])
	ka.yServer = new(big.Int).Set(ka.yTheirs)
	k = k[yLen:]
	if ka.yTheirs.Sign() <= 0 || ka.yTheirs.Cmp(ka.p) >= 0 {
		return errServerKeyExchange
	}

	sig := k
	serverDHParams := skx.key[:len(skx.key)-len(sig)]
	skx.digest, ka.verifyError = ka.auth.verifyParameters(config, clientHello, serverHello, cert, serverDHParams, sig)
	if config.InsecureSkipVerify {
		return nil
	}
	return ka.verifyError
}

func (ka *dheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
	if ka.p == nil || ka.g == nil || ka.yTheirs == nil {
		return nil, nil, errors.New("missing ServerKeyExchange message")
	}

	xOurs, err := rand.Int(config.rand(), ka.p)
	if err != nil {
		return nil, nil, err
	}
	preMasterSecret := new(big.Int).Exp(ka.yTheirs, xOurs, ka.p).Bytes()

	yOurs := new(big.Int).Exp(ka.g, xOurs, ka.p)
	ka.yOurs = yOurs
	ka.xOurs = xOurs
	ka.yClient = new(big.Int).Set(yOurs)
	yBytes := yOurs.Bytes()
	ckx := new(clientKeyExchangeMsg)
	ckx.ciphertext = make([]byte, 2+len(yBytes))
	ckx.ciphertext[0] = byte(len(yBytes) >> 8)
	ckx.ciphertext[1] = byte(len(yBytes))
	copy(ckx.ciphertext[2:], yBytes)

	return preMasterSecret, ckx, nil
}