1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x509
// RFC 1423 describes the encryption of PEM blocks. The algorithm used to
// generate a key from the password was derived by looking at the OpenSSL
// implementation.
import (
"crypto/aes"
"crypto/cipher"
"crypto/des"
"crypto/md5"
"encoding/hex"
"encoding/pem"
"errors"
"io"
"strings"
)
type PEMCipher int
// Possible values for the EncryptPEMBlock encryption algorithm.
const (
_ PEMCipher = iota
PEMCipherDES
PEMCipher3DES
PEMCipherAES128
PEMCipherAES192
PEMCipherAES256
)
// rfc1423Algo holds a method for enciphering a PEM block.
type rfc1423Algo struct {
cipher PEMCipher
name string
cipherFunc func(key []byte) (cipher.Block, error)
keySize int
blockSize int
}
// rfc1423Algos holds a slice of the possible ways to encrypt a PEM
// block. The ivSize numbers were taken from the OpenSSL source.
var rfc1423Algos = []rfc1423Algo{{
cipher: PEMCipherDES,
name: "DES-CBC",
cipherFunc: des.NewCipher,
keySize: 8,
blockSize: des.BlockSize,
}, {
cipher: PEMCipher3DES,
name: "DES-EDE3-CBC",
cipherFunc: des.NewTripleDESCipher,
keySize: 24,
blockSize: des.BlockSize,
}, {
cipher: PEMCipherAES128,
name: "AES-128-CBC",
cipherFunc: aes.NewCipher,
keySize: 16,
blockSize: aes.BlockSize,
}, {
cipher: PEMCipherAES192,
name: "AES-192-CBC",
cipherFunc: aes.NewCipher,
keySize: 24,
blockSize: aes.BlockSize,
}, {
cipher: PEMCipherAES256,
name: "AES-256-CBC",
cipherFunc: aes.NewCipher,
keySize: 32,
blockSize: aes.BlockSize,
},
}
// deriveKey uses a key derivation function to stretch the password into a key
// with the number of bits our cipher requires. This algorithm was derived from
// the OpenSSL source.
func (c rfc1423Algo) deriveKey(password, salt []byte) []byte {
hash := md5.New()
out := make([]byte, c.keySize)
var digest []byte
for i := 0; i < len(out); i += len(digest) {
hash.Reset()
hash.Write(digest)
hash.Write(password)
hash.Write(salt)
digest = hash.Sum(digest[:0])
copy(out[i:], digest)
}
return out
}
// IsEncryptedPEMBlock returns if the PEM block is password encrypted.
func IsEncryptedPEMBlock(b *pem.Block) bool {
_, ok := b.Headers["DEK-Info"]
return ok
}
// IncorrectPasswordError is returned when an incorrect password is detected.
var IncorrectPasswordError = errors.New("x509: decryption password incorrect")
// DecryptPEMBlock takes a password encrypted PEM block and the password used to
// encrypt it and returns a slice of decrypted DER encoded bytes. It inspects
// the DEK-Info header to determine the algorithm used for decryption. If no
// DEK-Info header is present, an error is returned. If an incorrect password
// is detected an IncorrectPasswordError is returned. Because of deficiencies
// in the encrypted-PEM format, it's not always possible to detect an incorrect
// password. In these cases no error will be returned but the decrypted DER
// bytes will be random noise.
func DecryptPEMBlock(b *pem.Block, password []byte) ([]byte, error) {
dek, ok := b.Headers["DEK-Info"]
if !ok {
return nil, errors.New("x509: no DEK-Info header in block")
}
idx := strings.Index(dek, ",")
if idx == -1 {
return nil, errors.New("x509: malformed DEK-Info header")
}
mode, hexIV := dek[:idx], dek[idx+1:]
ciph := cipherByName(mode)
if ciph == nil {
return nil, errors.New("x509: unknown encryption mode")
}
iv, err := hex.DecodeString(hexIV)
if err != nil {
return nil, err
}
if len(iv) != ciph.blockSize {
return nil, errors.New("x509: incorrect IV size")
}
// Based on the OpenSSL implementation. The salt is the first 8 bytes
// of the initialization vector.
key := ciph.deriveKey(password, iv[:8])
block, err := ciph.cipherFunc(key)
if err != nil {
return nil, err
}
if len(b.Bytes)%block.BlockSize() != 0 {
return nil, errors.New("x509: encrypted PEM data is not a multiple of the block size")
}
data := make([]byte, len(b.Bytes))
dec := cipher.NewCBCDecrypter(block, iv)
dec.CryptBlocks(data, b.Bytes)
// Blocks are padded using a scheme where the last n bytes of padding are all
// equal to n. It can pad from 1 to blocksize bytes inclusive. See RFC 1423.
// For example:
// [x y z 2 2]
// [x y 7 7 7 7 7 7 7]
// If we detect a bad padding, we assume it is an invalid password.
dlen := len(data)
if dlen == 0 || dlen%ciph.blockSize != 0 {
return nil, errors.New("x509: invalid padding")
}
last := int(data[dlen-1])
if dlen < last {
return nil, IncorrectPasswordError
}
if last == 0 || last > ciph.blockSize {
return nil, IncorrectPasswordError
}
for _, val := range data[dlen-last:] {
if int(val) != last {
return nil, IncorrectPasswordError
}
}
return data[:dlen-last], nil
}
// EncryptPEMBlock returns a PEM block of the specified type holding the
// given DER-encoded data encrypted with the specified algorithm and
// password.
func EncryptPEMBlock(rand io.Reader, blockType string, data, password []byte, alg PEMCipher) (*pem.Block, error) {
ciph := cipherByKey(alg)
if ciph == nil {
return nil, errors.New("x509: unknown encryption mode")
}
iv := make([]byte, ciph.blockSize)
if _, err := io.ReadFull(rand, iv); err != nil {
return nil, errors.New("x509: cannot generate IV: " + err.Error())
}
// The salt is the first 8 bytes of the initialization vector,
// matching the key derivation in DecryptPEMBlock.
key := ciph.deriveKey(password, iv[:8])
block, err := ciph.cipherFunc(key)
if err != nil {
return nil, err
}
enc := cipher.NewCBCEncrypter(block, iv)
pad := ciph.blockSize - len(data)%ciph.blockSize
encrypted := make([]byte, len(data), len(data)+pad)
// We could save this copy by encrypting all the whole blocks in
// the data separately, but it doesn't seem worth the additional
// code.
copy(encrypted, data)
// See RFC 1423, section 1.1
for i := 0; i < pad; i++ {
encrypted = append(encrypted, byte(pad))
}
enc.CryptBlocks(encrypted, encrypted)
return &pem.Block{
Type: blockType,
Headers: map[string]string{
"Proc-Type": "4,ENCRYPTED",
"DEK-Info": ciph.name + "," + hex.EncodeToString(iv),
},
Bytes: encrypted,
}, nil
}
func cipherByName(name string) *rfc1423Algo {
for i := range rfc1423Algos {
alg := &rfc1423Algos[i]
if alg.name == name {
return alg
}
}
return nil
}
func cipherByKey(key PEMCipher) *rfc1423Algo {
for i := range rfc1423Algos {
alg := &rfc1423Algos[i]
if alg.cipher == key {
return alg
}
}
return nil
}
|