1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x509
import (
"errors"
"fmt"
"net"
"strings"
"time"
"unicode/utf8"
)
type InvalidReason int
const (
// NotAuthorizedToSign results when a certificate is signed by another
// which isn't marked as a CA certificate.
NotAuthorizedToSign InvalidReason = iota
// Expired results when a certificate has expired, based on the time
// given in the VerifyOptions.
Expired
// CANotAuthorizedForThisName results when an intermediate or root
// certificate has a name constraint which doesn't include the name
// being checked.
CANotAuthorizedForThisName
// CANotAuthorizedForThisEmail results when an intermediate or root
// certificate has a name constraint which doesn't include the email
// being checked.
CANotAuthorizedForThisEmail
// CANotAuthorizedForThisIP results when an intermediate or root
// certificate has a name constraint which doesn't include the IP
// being checked.
CANotAuthorizedForThisIP
// CANotAuthorizedForThisDirectory results when an intermediate or root
// certificate has a name constraint which doesn't include the directory
// being checked.
CANotAuthorizedForThisDirectory
// TooManyIntermediates results when a path length constraint is
// violated.
TooManyIntermediates
// IncompatibleUsage results when the certificate's key usage indicates
// that it may only be used for a different purpose.
IncompatibleUsage
// NameMismatch results when the subject name of a parent certificate
// does not match the issuer name in the child.
NameMismatch
// NeverValid results when the certificate could never have been valid due to
// some date-related issue, e.g. NotBefore > NotAfter.
NeverValid
// IsSelfSigned results when the certificate is self-signed and not a trusted
// root.
IsSelfSigned
)
// CertificateInvalidError results when an odd error occurs. Users of this
// library probably want to handle all these errors uniformly.
type CertificateInvalidError struct {
Cert *Certificate
Reason InvalidReason
}
func (e CertificateInvalidError) Error() string {
switch e.Reason {
case NotAuthorizedToSign:
return "x509: certificate is not authorized to sign other certificates"
case Expired:
return "x509: certificate has expired or is not yet valid"
case CANotAuthorizedForThisName:
return "x509: a root or intermediate certificate is not authorized to sign in this domain"
case CANotAuthorizedForThisEmail:
return "x509: a root or intermediate certificate is not authorized to sign this email address"
case CANotAuthorizedForThisIP:
return "x509: a root or intermediate certificate is not authorized to sign this IP address"
case CANotAuthorizedForThisDirectory:
return "x509: a root or intermediate certificate is not authorized to sign in this directory"
case TooManyIntermediates:
return "x509: too many intermediates for path length constraint"
case IncompatibleUsage:
return "x509: certificate specifies an incompatible key usage"
case NameMismatch:
return "x509: issuer name does not match subject from issuing certificate"
case NeverValid:
return "x509: certificate will never be valid"
}
return "x509: unknown error"
}
// HostnameError results when the set of authorized names doesn't match the
// requested name.
type HostnameError struct {
Certificate *Certificate
Host string
}
func (h HostnameError) Error() string {
c := h.Certificate
var valid string
if ip := net.ParseIP(h.Host); ip != nil {
// Trying to validate an IP
if len(c.IPAddresses) == 0 {
return "x509: cannot validate certificate for " + h.Host + " because it doesn't contain any IP SANs"
}
for _, san := range c.IPAddresses {
if len(valid) > 0 {
valid += ", "
}
valid += san.String()
}
} else {
if c.hasSANExtension() {
valid = strings.Join(c.DNSNames, ", ")
} else {
valid = c.Subject.CommonName
}
}
if len(valid) == 0 {
return "x509: certificate is not valid for any names, but wanted to match " + h.Host
}
return "x509: certificate is valid for " + valid + ", not " + h.Host
}
// UnknownAuthorityError results when the certificate issuer is unknown
type UnknownAuthorityError struct {
Cert *Certificate
// hintErr contains an error that may be helpful in determining why an
// authority wasn't found.
hintErr error
// hintCert contains a possible authority certificate that was rejected
// because of the error in hintErr.
hintCert *Certificate
}
func (e UnknownAuthorityError) Error() string {
s := "x509: certificate signed by unknown authority"
if e.hintErr != nil {
certName := e.hintCert.Subject.CommonName
if len(certName) == 0 {
if len(e.hintCert.Subject.Organization) > 0 {
certName = e.hintCert.Subject.Organization[0]
} else {
certName = "serial:" + e.hintCert.SerialNumber.String()
}
}
s += fmt.Sprintf(" (possibly because of %q while trying to verify candidate authority certificate %q)", e.hintErr, certName)
}
return s
}
// SystemRootsError results when we fail to load the system root certificates.
type SystemRootsError struct {
Err error
}
func (se SystemRootsError) Error() string {
msg := "x509: failed to load system roots and no roots provided"
if se.Err != nil {
return msg + "; " + se.Err.Error()
}
return msg
}
// errNotParsed is returned when a certificate without ASN.1 contents is
// verified. Platform-specific verification needs the ASN.1 contents.
var errNotParsed = errors.New("x509: missing ASN.1 contents; use ParseCertificate")
const maxIntermediateCount = 10
// VerifyOptions contains parameters for Certificate.Verify. It's a structure
// because other PKIX verification APIs have ended up needing many options.
type VerifyOptions struct {
DNSName string
EmailAddress string
IPAddress net.IP
Intermediates *CertPool
Roots *CertPool // if nil, the system roots are used
CurrentTime time.Time // if zero, the current time is used
// KeyUsage specifies which Extended Key Usage values are acceptable.
// An empty list means ExtKeyUsageServerAuth. Key usage is considered a
// constraint down the chain which mirrors Windows CryptoAPI behaviour,
// but not the spec. To accept any key usage, include ExtKeyUsageAny.
KeyUsages []ExtKeyUsage
}
const (
leafCertificate = iota
intermediateCertificate
rootCertificate
)
func matchNameConstraint(domain, constraint string) bool {
// The meaning of zero length constraints is not specified, but this
// code follows NSS and accepts them as matching everything.
if len(constraint) == 0 {
return true
}
if len(domain) < len(constraint) {
return false
}
prefixLen := len(domain) - len(constraint)
if !strings.EqualFold(domain[prefixLen:], constraint) {
return false
}
if prefixLen == 0 {
return true
}
isSubdomain := domain[prefixLen-1] == '.'
constraintHasLeadingDot := constraint[0] == '.'
return isSubdomain != constraintHasLeadingDot
}
// NOTE: the stdlib function does many more checks and is preferable. For backwards compatibility using this version
// isValid performs validity checks on the c. It will never return a
// date-related error.
func (c *Certificate) isValid(certType CertificateType, currentChain CertificateChain) error {
// KeyUsage status flags are ignored. From Engineering Security, Peter
// Gutmann: A European government CA marked its signing certificates as
// being valid for encryption only, but no-one noticed. Another
// European CA marked its signature keys as not being valid for
// signatures. A different CA marked its own trusted root certificate
// as being invalid for certificate signing. Another national CA
// distributed a certificate to be used to encrypt data for the
// country’s tax authority that was marked as only being usable for
// digital signatures but not for encryption. Yet another CA reversed
// the order of the bit flags in the keyUsage due to confusion over
// encoding endianness, essentially setting a random keyUsage in
// certificates that it issued. Another CA created a self-invalidating
// certificate by adding a certificate policy statement stipulating
// that the certificate had to be used strictly as specified in the
// keyUsage, and a keyUsage containing a flag indicating that the RSA
// encryption key could only be used for Diffie-Hellman key agreement.
if certType == CertificateTypeIntermediate && (!c.BasicConstraintsValid || !c.IsCA) {
return CertificateInvalidError{c, NotAuthorizedToSign}
}
if c.BasicConstraintsValid && c.MaxPathLen >= 0 {
numIntermediates := len(currentChain) - 1
if numIntermediates > c.MaxPathLen {
return CertificateInvalidError{c, TooManyIntermediates}
}
}
if len(currentChain) > maxIntermediateCount {
return CertificateInvalidError{c, TooManyIntermediates}
}
return nil
}
// Verify attempts to verify c by building one or more chains from c to a
// certificate in opts.Roots, using certificates in opts.Intermediates if
// needed. If successful, it returns one or more chains where the first
// element of the chain is c and the last element is from opts.Roots.
//
// If opts.Roots is nil and system roots are unavailable the returned error
// will be of type SystemRootsError.
//
// WARNING: this doesn't do any revocation checking.
func (c *Certificate) Verify(opts VerifyOptions) (current, expired, never []CertificateChain, err error) {
if opts.Roots == nil {
err = SystemRootsError{}
return
}
err = c.isValid(CertificateTypeLeaf, nil)
if err != nil {
return
}
candidateChains, err := c.buildChains(make(map[int][]CertificateChain), []*Certificate{c}, &opts)
if err != nil {
return
}
keyUsages := opts.KeyUsages
if len(keyUsages) == 0 {
keyUsages = []ExtKeyUsage{ExtKeyUsageServerAuth}
}
// If any key usage is acceptable then we're done.
hasKeyUsageAny := false
for _, usage := range keyUsages {
if usage == ExtKeyUsageAny {
hasKeyUsageAny = true
break
}
}
var chains []CertificateChain
if hasKeyUsageAny {
chains = candidateChains
} else {
for _, candidate := range candidateChains {
if checkChainForKeyUsage(candidate, keyUsages) {
chains = append(chains, candidate)
}
}
}
if len(chains) == 0 {
err = CertificateInvalidError{c, IncompatibleUsage}
return
}
current, expired, never = FilterByDate(chains, opts.CurrentTime)
if len(current) == 0 {
if len(expired) > 0 {
err = CertificateInvalidError{c, Expired}
} else if len(never) > 0 {
err = CertificateInvalidError{c, NeverValid}
}
return
}
if len(opts.DNSName) > 0 {
err = c.VerifyHostname(opts.DNSName)
if err != nil {
return
}
}
return
}
func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate {
n := make([]*Certificate, len(chain)+1)
copy(n, chain)
n[len(chain)] = cert
return n
}
// buildChains returns all chains of length < maxIntermediateCount. Chains begin
// the certificate being validated (chain[0] = c), and end at a root. It
// enforces that all intermediates can sign certificates, and checks signatures.
// It does not enforce expiration.
func (c *Certificate) buildChains(cache map[int][]CertificateChain, currentChain CertificateChain, opts *VerifyOptions) (chains []CertificateChain, err error) {
// If the certificate being validated is a root, add the chain of length one
// containing just the root. Only do this on the first call to buildChains,
// when the len(currentChain) = 1.
if len(currentChain) == 1 && opts.Roots.Contains(c) {
chains = append(chains, CertificateChain{c})
}
if len(chains) == 0 && c.SelfSigned {
err = CertificateInvalidError{c, IsSelfSigned}
}
// Find roots that signed c and have matching SKID/AKID and Subject/Issuer.
possibleRoots, failedRoot, rootErr := opts.Roots.findVerifiedParents(c)
// If any roots are parents of c, create new chain for each one of them.
for _, rootNum := range possibleRoots {
root := opts.Roots.certs[rootNum]
err = root.isValid(CertificateTypeRoot, currentChain)
if err != nil {
continue
}
if !currentChain.CertificateInChain(root) {
chains = append(chains, currentChain.AppendToFreshChain(root))
}
}
// The root chains of length N+1 are now "done". Now we'll look for any
// intermediates that issue this certificate, meaning that any chain to a root
// through these intermediates is at least length N+2.
possibleIntermediates, failedIntermediate, intermediateErr := opts.Intermediates.findVerifiedParents(c)
for _, intermediateNum := range possibleIntermediates {
intermediate := opts.Intermediates.certs[intermediateNum]
if opts.Roots.Contains(intermediate) {
continue
}
if currentChain.CertificateSubjectAndKeyInChain(intermediate) {
continue
}
err = intermediate.isValid(CertificateTypeIntermediate, currentChain)
if err != nil {
continue
}
// We don't want to add any certificate to chains that doesn't somehow get
// to a root. We don't know if all chains through the intermediates will end
// at a root, so we slice off the back half of the chain and try to build
// that part separately.
childChains, ok := cache[intermediateNum]
if !ok {
childChains, err = intermediate.buildChains(cache, currentChain.AppendToFreshChain(intermediate), opts)
cache[intermediateNum] = childChains
}
chains = append(chains, childChains...)
}
if len(chains) > 0 {
err = nil
}
if len(chains) == 0 && err == nil {
hintErr := rootErr
hintCert := failedRoot
if hintErr == nil {
hintErr = intermediateErr
hintCert = failedIntermediate
}
err = UnknownAuthorityError{c, hintErr, hintCert}
}
return
}
func matchHostnames(pattern, host string) bool {
host = strings.TrimSuffix(host, ".")
pattern = strings.TrimSuffix(pattern, ".")
if len(pattern) == 0 || len(host) == 0 {
return false
}
patternParts := strings.Split(pattern, ".")
hostParts := strings.Split(host, ".")
if len(patternParts) != len(hostParts) {
return false
}
for i, patternPart := range patternParts {
if /*i == 0 &&*/ patternPart == "*" {
continue
}
if patternPart != hostParts[i] {
return false
}
}
return true
}
// toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use
// an explicitly ASCII function to avoid any sharp corners resulting from
// performing Unicode operations on DNS labels.
func toLowerCaseASCII(in string) string {
// If the string is already lower-case then there's nothing to do.
isAlreadyLowerCase := true
for _, c := range in {
if c == utf8.RuneError {
// If we get a UTF-8 error then there might be
// upper-case ASCII bytes in the invalid sequence.
isAlreadyLowerCase = false
break
}
if 'A' <= c && c <= 'Z' {
isAlreadyLowerCase = false
break
}
}
if isAlreadyLowerCase {
return in
}
out := []byte(in)
for i, c := range out {
if 'A' <= c && c <= 'Z' {
out[i] += 'a' - 'A'
}
}
return string(out)
}
// VerifyHostname returns nil if c is a valid certificate for the named host.
// Otherwise it returns an error describing the mismatch.
func (c *Certificate) VerifyHostname(h string) error {
// IP addresses may be written in [ ].
candidateIP := h
if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' {
candidateIP = h[1 : len(h)-1]
}
if ip := net.ParseIP(candidateIP); ip != nil {
// We only match IP addresses against IP SANs.
// https://tools.ietf.org/html/rfc6125#appendix-B.2
for _, candidate := range c.IPAddresses {
if ip.Equal(candidate) {
return nil
}
}
return HostnameError{c, candidateIP}
}
lowered := toLowerCaseASCII(h)
if c.hasSANExtension() {
for _, match := range c.DNSNames {
if matchHostnames(toLowerCaseASCII(match), lowered) {
return nil
}
}
// If Subject Alt Name is given, we ignore the common name.
} else if matchHostnames(toLowerCaseASCII(c.Subject.CommonName), lowered) {
return nil
}
return HostnameError{c, h}
}
func checkChainForKeyUsage(chain []*Certificate, keyUsages []ExtKeyUsage) bool {
usages := make([]ExtKeyUsage, len(keyUsages))
copy(usages, keyUsages)
if len(chain) == 0 {
return false
}
usagesRemaining := len(usages)
// We walk down the list and cross out any usages that aren't supported
// by each certificate. If we cross out all the usages, then the chain
// is unacceptable.
NextCert:
for i := len(chain) - 1; i >= 0; i-- {
cert := chain[i]
if len(cert.ExtKeyUsage) == 0 && len(cert.UnknownExtKeyUsage) == 0 {
// The certificate doesn't have any extended key usage specified.
continue
}
for _, usage := range cert.ExtKeyUsage {
if usage == ExtKeyUsageAny {
// The certificate is explicitly good for any usage.
continue NextCert
}
}
const invalidUsage ExtKeyUsage = -1
NextRequestedUsage:
for i, requestedUsage := range usages {
if requestedUsage == invalidUsage {
continue
}
for _, usage := range cert.ExtKeyUsage {
if requestedUsage == usage {
continue NextRequestedUsage
} else if requestedUsage == ExtKeyUsageServerAuth &&
(usage == ExtKeyUsageNetscapeServerGatedCrypto ||
usage == ExtKeyUsageMicrosoftServerGatedCrypto) {
// In order to support COMODO
// certificate chains, we have to
// accept Netscape or Microsoft SGC
// usages as equal to ServerAuth.
continue NextRequestedUsage
}
}
usages[i] = invalidUsage
usagesRemaining--
if usagesRemaining == 0 {
return false
}
}
}
return true
}
// earlier returns the earlier of a and b
func earlier(a, b time.Time) time.Time {
if a.Before(b) {
return a
}
return b
}
// later returns the later of a and b
func later(a, b time.Time) time.Time {
if a.After(b) {
return a
}
return b
}
// check expirations divides chains into a set of disjoint chains, containing
// current chains valid now, expired chains that were valid at some point, and
// the set of chains that were never valid.
func FilterByDate(chains []CertificateChain, now time.Time) (current, expired, never []CertificateChain) {
for _, chain := range chains {
if len(chain) == 0 {
continue
}
leaf := chain[0]
lowerBound := leaf.NotBefore
upperBound := leaf.NotAfter
for _, c := range chain[1:] {
lowerBound = later(lowerBound, c.NotBefore)
upperBound = earlier(upperBound, c.NotAfter)
}
valid := lowerBound.Before(now) && upperBound.After(now)
wasValid := lowerBound.Before(upperBound)
if valid && !wasValid {
// Math/logic tells us this is impossible.
panic("valid && !wasValid should not be possible")
}
if valid {
current = append(current, chain)
} else if wasValid {
expired = append(expired, chain)
} else {
never = append(never, chain)
}
}
return
}
|