1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package chacha20
import (
"bytes"
"encoding/hex"
"fmt"
"math/rand"
"testing"
)
func _() {
// Assert that bufSize is a multiple of blockSize.
var b [1]byte
_ = b[bufSize%blockSize]
}
func hexDecode(s string) []byte {
ss, err := hex.DecodeString(s)
if err != nil {
panic(fmt.Sprintf("cannot decode input %#v: %v", s, err))
}
return ss
}
// Run the test cases with the input and output in different buffers.
func TestNoOverlap(t *testing.T) {
for _, c := range testVectors {
s, _ := NewUnauthenticatedCipher(hexDecode(c.key), hexDecode(c.nonce))
input := hexDecode(c.input)
output := make([]byte, len(input))
s.XORKeyStream(output, input)
got := hex.EncodeToString(output)
if got != c.output {
t.Errorf("length=%v: got %#v, want %#v", len(input), got, c.output)
}
}
}
// Run the test cases with the input and output overlapping entirely.
func TestOverlap(t *testing.T) {
for _, c := range testVectors {
s, _ := NewUnauthenticatedCipher(hexDecode(c.key), hexDecode(c.nonce))
data := hexDecode(c.input)
s.XORKeyStream(data, data)
got := hex.EncodeToString(data)
if got != c.output {
t.Errorf("length=%v: got %#v, want %#v", len(data), got, c.output)
}
}
}
// Run the test cases with various source and destination offsets.
func TestUnaligned(t *testing.T) {
const max = 8 // max offset (+1) to test
for _, c := range testVectors {
data := hexDecode(c.input)
input := make([]byte, len(data)+max)
output := make([]byte, len(data)+max)
for i := 0; i < max; i++ { // input offsets
for j := 0; j < max; j++ { // output offsets
s, _ := NewUnauthenticatedCipher(hexDecode(c.key), hexDecode(c.nonce))
input := input[i : i+len(data)]
output := output[j : j+len(data)]
copy(input, data)
s.XORKeyStream(output, input)
got := hex.EncodeToString(output)
if got != c.output {
t.Errorf("length=%v: got %#v, want %#v", len(data), got, c.output)
}
}
}
}
}
// Run the test cases by calling XORKeyStream multiple times.
func TestStep(t *testing.T) {
// wide range of step sizes to try and hit edge cases
steps := [...]int{1, 3, 4, 7, 8, 17, 24, 30, 64, 256}
rnd := rand.New(rand.NewSource(123))
for _, c := range testVectors {
s, _ := NewUnauthenticatedCipher(hexDecode(c.key), hexDecode(c.nonce))
input := hexDecode(c.input)
output := make([]byte, len(input))
// step through the buffers
i, step := 0, steps[rnd.Intn(len(steps))]
for i+step < len(input) {
s.XORKeyStream(output[i:i+step], input[i:i+step])
if i+step < len(input) && output[i+step] != 0 {
t.Errorf("length=%v, i=%v, step=%v: output overwritten", len(input), i, step)
}
i += step
step = steps[rnd.Intn(len(steps))]
}
// finish the encryption
s.XORKeyStream(output[i:], input[i:])
// ensure we tolerate a call with an empty input
s.XORKeyStream(output[len(output):], input[len(input):])
got := hex.EncodeToString(output)
if got != c.output {
t.Errorf("length=%v: got %#v, want %#v", len(input), got, c.output)
}
}
}
func TestSetCounter(t *testing.T) {
newCipher := func() *Cipher {
s, _ := NewUnauthenticatedCipher(make([]byte, KeySize), make([]byte, NonceSize))
return s
}
s := newCipher()
src := bytes.Repeat([]byte("test"), 32) // two 64-byte blocks
dst1 := make([]byte, len(src))
s.XORKeyStream(dst1, src)
// advance counter to 1 and xor second block
s = newCipher()
s.SetCounter(1)
dst2 := make([]byte, len(src))
s.XORKeyStream(dst2[64:], src[64:])
if !bytes.Equal(dst1[64:], dst2[64:]) {
t.Error("failed to produce identical output using SetCounter")
}
// test again with unaligned blocks; SetCounter should reset the buffer
s = newCipher()
s.XORKeyStream(dst1[:70], src[:70])
s = newCipher()
s.XORKeyStream([]byte{0}, []byte{0})
s.SetCounter(1)
s.XORKeyStream(dst2[64:70], src[64:70])
if !bytes.Equal(dst1[64:70], dst2[64:70]) {
t.Error("SetCounter did not reset buffer")
}
// advancing to a lower counter value should cause a panic
panics := func(fn func()) (p bool) {
defer func() { p = recover() != nil }()
fn()
return
}
if !panics(func() { s.SetCounter(0) }) {
t.Error("counter decreasing should trigger a panic")
}
}
func TestLastBlock(t *testing.T) {
panics := func(fn func()) (p bool) {
defer func() { p = recover() != nil }()
fn()
return
}
checkLastBlock := func(b []byte) {
t.Helper()
// Hardcoded result to check all implementations generate the same output.
lastBlock := "ace4cd09e294d1912d4ad205d06f95d9c2f2bfcf453e8753f128765b62215f4d" +
"92c74f2f626c6a640c0b1284d839ec81f1696281dafc3e684593937023b58b1d"
if got := hex.EncodeToString(b); got != lastBlock {
t.Errorf("wrong output for the last block, got %q, want %q", got, lastBlock)
}
}
// setting the counter to 0xffffffff and crypting multiple blocks should
// trigger a panic
s, _ := NewUnauthenticatedCipher(make([]byte, KeySize), make([]byte, NonceSize))
s.SetCounter(0xffffffff)
blocks := make([]byte, blockSize*2)
if !panics(func() { s.XORKeyStream(blocks, blocks) }) {
t.Error("crypting multiple blocks should trigger a panic")
}
// setting the counter to 0xffffffff - 1 and crypting two blocks should not
// trigger a panic
s, _ = NewUnauthenticatedCipher(make([]byte, KeySize), make([]byte, NonceSize))
s.SetCounter(0xffffffff - 1)
if panics(func() { s.XORKeyStream(blocks, blocks) }) {
t.Error("crypting the last blocks should not trigger a panic")
}
checkLastBlock(blocks[blockSize:])
// once all the keystream is spent, setting the counter should panic
if !panics(func() { s.SetCounter(0xffffffff) }) {
t.Error("setting the counter after overflow should trigger a panic")
}
// crypting a subsequent block *should* panic
block := make([]byte, blockSize)
if !panics(func() { s.XORKeyStream(block, block) }) {
t.Error("crypting after overflow should trigger a panic")
}
// if we crypt less than a full block, we should be able to crypt the rest
// in a subsequent call without panicking
s, _ = NewUnauthenticatedCipher(make([]byte, KeySize), make([]byte, NonceSize))
s.SetCounter(0xffffffff)
if panics(func() { s.XORKeyStream(block[:7], block[:7]) }) {
t.Error("crypting part of the last block should not trigger a panic")
}
if panics(func() { s.XORKeyStream(block[7:], block[7:]) }) {
t.Error("crypting part of the last block should not trigger a panic")
}
checkLastBlock(block)
// as before, a third call should trigger a panic because all keystream is spent
if !panics(func() { s.XORKeyStream(block[:1], block[:1]) }) {
t.Error("crypting after overflow should trigger a panic")
}
}
func benchmarkChaCha20(b *testing.B, step, count int) {
tot := step * count
src := make([]byte, tot)
dst := make([]byte, tot)
key := make([]byte, KeySize)
nonce := make([]byte, NonceSize)
b.SetBytes(int64(tot))
b.ResetTimer()
for i := 0; i < b.N; i++ {
c, _ := NewUnauthenticatedCipher(key, nonce)
for i := 0; i < tot; i += step {
c.XORKeyStream(dst[i:], src[i:i+step])
}
}
}
func BenchmarkChaCha20(b *testing.B) {
b.Run("64", func(b *testing.B) {
benchmarkChaCha20(b, 64, 1)
})
b.Run("256", func(b *testing.B) {
benchmarkChaCha20(b, 256, 1)
})
b.Run("10x25", func(b *testing.B) {
benchmarkChaCha20(b, 10, 25)
})
b.Run("4096", func(b *testing.B) {
benchmarkChaCha20(b, 4096, 1)
})
b.Run("100x40", func(b *testing.B) {
benchmarkChaCha20(b, 100, 40)
})
b.Run("65536", func(b *testing.B) {
benchmarkChaCha20(b, 65536, 1)
})
b.Run("1000x65", func(b *testing.B) {
benchmarkChaCha20(b, 1000, 65)
})
}
func TestHChaCha20(t *testing.T) {
// See draft-irtf-cfrg-xchacha-00, Section 2.2.1.
key := []byte{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f}
nonce := []byte{0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x4a,
0x00, 0x00, 0x00, 0x00, 0x31, 0x41, 0x59, 0x27}
expected := []byte{0x82, 0x41, 0x3b, 0x42, 0x27, 0xb2, 0x7b, 0xfe,
0xd3, 0x0e, 0x42, 0x50, 0x8a, 0x87, 0x7d, 0x73,
0xa0, 0xf9, 0xe4, 0xd5, 0x8a, 0x74, 0xa8, 0x53,
0xc1, 0x2e, 0xc4, 0x13, 0x26, 0xd3, 0xec, 0xdc,
}
result, err := HChaCha20(key[:], nonce[:])
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(expected, result) {
t.Errorf("want %x, got %x", expected, result)
}
}
|