1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// Tests include all the ShortMsgKATs provided by the Keccak team at
// https://github.com/gvanas/KeccakCodePackage
//
// They only include the zero-bit case of the bitwise testvectors
// published by NIST in the draft of FIPS-202.
import (
"bytes"
"compress/flate"
"encoding/hex"
"encoding/json"
"fmt"
"hash"
"math/rand"
"os"
"strings"
"testing"
)
const (
testString = "brekeccakkeccak koax koax"
katFilename = "testdata/keccakKats.json.deflate"
)
// testDigests contains functions returning hash.Hash instances
// with output-length equal to the KAT length for SHA-3, Keccak
// and SHAKE instances.
var testDigests = map[string]func() hash.Hash{
"SHA3-224": New224,
"SHA3-256": New256,
"SHA3-384": New384,
"SHA3-512": New512,
"Keccak-256": NewLegacyKeccak256,
"Keccak-512": NewLegacyKeccak512,
}
// testShakes contains functions that return sha3.ShakeHash instances for
// with output-length equal to the KAT length.
var testShakes = map[string]struct {
constructor func(N []byte, S []byte) ShakeHash
defAlgoName string
defCustomStr string
}{
// NewCShake without customization produces same result as SHAKE
"SHAKE128": {NewCShake128, "", ""},
"SHAKE256": {NewCShake256, "", ""},
"cSHAKE128": {NewCShake128, "CSHAKE128", "CustomStrign"},
"cSHAKE256": {NewCShake256, "CSHAKE256", "CustomStrign"},
}
// decodeHex converts a hex-encoded string into a raw byte string.
func decodeHex(s string) []byte {
b, err := hex.DecodeString(s)
if err != nil {
panic(err)
}
return b
}
// structs used to marshal JSON test-cases.
type KeccakKats struct {
Kats map[string][]struct {
Digest string `json:"digest"`
Length int64 `json:"length"`
Message string `json:"message"`
// Defined only for cSHAKE
N string `json:"N"`
S string `json:"S"`
}
}
func testUnalignedAndGeneric(t *testing.T, testf func(impl string)) {
xorInOrig, copyOutOrig := xorIn, copyOut
xorIn, copyOut = xorInGeneric, copyOutGeneric
testf("generic")
if xorImplementationUnaligned != "generic" {
xorIn, copyOut = xorInUnaligned, copyOutUnaligned
testf("unaligned")
}
xorIn, copyOut = xorInOrig, copyOutOrig
}
// TestKeccakKats tests the SHA-3 and Shake implementations against all the
// ShortMsgKATs from https://github.com/gvanas/KeccakCodePackage
// (The testvectors are stored in keccakKats.json.deflate due to their length.)
func TestKeccakKats(t *testing.T) {
testUnalignedAndGeneric(t, func(impl string) {
// Read the KATs.
deflated, err := os.Open(katFilename)
if err != nil {
t.Errorf("error opening %s: %s", katFilename, err)
}
file := flate.NewReader(deflated)
dec := json.NewDecoder(file)
var katSet KeccakKats
err = dec.Decode(&katSet)
if err != nil {
t.Errorf("error decoding KATs: %s", err)
}
for algo, function := range testDigests {
d := function()
for _, kat := range katSet.Kats[algo] {
d.Reset()
in, err := hex.DecodeString(kat.Message)
if err != nil {
t.Errorf("error decoding KAT: %s", err)
}
d.Write(in[:kat.Length/8])
got := strings.ToUpper(hex.EncodeToString(d.Sum(nil)))
if got != kat.Digest {
t.Errorf("function=%s, implementation=%s, length=%d\nmessage:\n %s\ngot:\n %s\nwanted:\n %s",
algo, impl, kat.Length, kat.Message, got, kat.Digest)
t.Logf("wanted %+v", kat)
t.FailNow()
}
continue
}
}
for algo, v := range testShakes {
for _, kat := range katSet.Kats[algo] {
N, err := hex.DecodeString(kat.N)
if err != nil {
t.Errorf("error decoding KAT: %s", err)
}
S, err := hex.DecodeString(kat.S)
if err != nil {
t.Errorf("error decoding KAT: %s", err)
}
d := v.constructor(N, S)
in, err := hex.DecodeString(kat.Message)
if err != nil {
t.Errorf("error decoding KAT: %s", err)
}
d.Write(in[:kat.Length/8])
out := make([]byte, len(kat.Digest)/2)
d.Read(out)
got := strings.ToUpper(hex.EncodeToString(out))
if got != kat.Digest {
t.Errorf("function=%s, implementation=%s, length=%d N:%s\n S:%s\nmessage:\n %s \ngot:\n %s\nwanted:\n %s",
algo, impl, kat.Length, kat.N, kat.S, kat.Message, got, kat.Digest)
t.Logf("wanted %+v", kat)
t.FailNow()
}
continue
}
}
})
}
// TestKeccak does a basic test of the non-standardized Keccak hash functions.
func TestKeccak(t *testing.T) {
tests := []struct {
fn func() hash.Hash
data []byte
want string
}{
{
NewLegacyKeccak256,
[]byte("abc"),
"4e03657aea45a94fc7d47ba826c8d667c0d1e6e33a64a036ec44f58fa12d6c45",
},
{
NewLegacyKeccak512,
[]byte("abc"),
"18587dc2ea106b9a1563e32b3312421ca164c7f1f07bc922a9c83d77cea3a1e5d0c69910739025372dc14ac9642629379540c17e2a65b19d77aa511a9d00bb96",
},
}
for _, u := range tests {
h := u.fn()
h.Write(u.data)
got := h.Sum(nil)
want := decodeHex(u.want)
if !bytes.Equal(got, want) {
t.Errorf("unexpected hash for size %d: got '%x' want '%s'", h.Size()*8, got, u.want)
}
}
}
// TestUnalignedWrite tests that writing data in an arbitrary pattern with
// small input buffers.
func TestUnalignedWrite(t *testing.T) {
testUnalignedAndGeneric(t, func(impl string) {
buf := sequentialBytes(0x10000)
for alg, df := range testDigests {
d := df()
d.Reset()
d.Write(buf)
want := d.Sum(nil)
d.Reset()
for i := 0; i < len(buf); {
// Cycle through offsets which make a 137 byte sequence.
// Because 137 is prime this sequence should exercise all corner cases.
offsets := [17]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1}
for _, j := range offsets {
if v := len(buf) - i; v < j {
j = v
}
d.Write(buf[i : i+j])
i += j
}
}
got := d.Sum(nil)
if !bytes.Equal(got, want) {
t.Errorf("Unaligned writes, implementation=%s, alg=%s\ngot %q, want %q", impl, alg, got, want)
}
}
// Same for SHAKE
for alg, df := range testShakes {
want := make([]byte, 16)
got := make([]byte, 16)
d := df.constructor([]byte(df.defAlgoName), []byte(df.defCustomStr))
d.Reset()
d.Write(buf)
d.Read(want)
d.Reset()
for i := 0; i < len(buf); {
// Cycle through offsets which make a 137 byte sequence.
// Because 137 is prime this sequence should exercise all corner cases.
offsets := [17]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1}
for _, j := range offsets {
if v := len(buf) - i; v < j {
j = v
}
d.Write(buf[i : i+j])
i += j
}
}
d.Read(got)
if !bytes.Equal(got, want) {
t.Errorf("Unaligned writes, implementation=%s, alg=%s\ngot %q, want %q", impl, alg, got, want)
}
}
})
}
// TestAppend checks that appending works when reallocation is necessary.
func TestAppend(t *testing.T) {
testUnalignedAndGeneric(t, func(impl string) {
d := New224()
for capacity := 2; capacity <= 66; capacity += 64 {
// The first time around the loop, Sum will have to reallocate.
// The second time, it will not.
buf := make([]byte, 2, capacity)
d.Reset()
d.Write([]byte{0xcc})
buf = d.Sum(buf)
expected := "0000DF70ADC49B2E76EEE3A6931B93FA41841C3AF2CDF5B32A18B5478C39"
if got := strings.ToUpper(hex.EncodeToString(buf)); got != expected {
t.Errorf("got %s, want %s", got, expected)
}
}
})
}
// TestAppendNoRealloc tests that appending works when no reallocation is necessary.
func TestAppendNoRealloc(t *testing.T) {
testUnalignedAndGeneric(t, func(impl string) {
buf := make([]byte, 1, 200)
d := New224()
d.Write([]byte{0xcc})
buf = d.Sum(buf)
expected := "00DF70ADC49B2E76EEE3A6931B93FA41841C3AF2CDF5B32A18B5478C39"
if got := strings.ToUpper(hex.EncodeToString(buf)); got != expected {
t.Errorf("%s: got %s, want %s", impl, got, expected)
}
})
}
// TestSqueezing checks that squeezing the full output a single time produces
// the same output as repeatedly squeezing the instance.
func TestSqueezing(t *testing.T) {
testUnalignedAndGeneric(t, func(impl string) {
for algo, v := range testShakes {
d0 := v.constructor([]byte(v.defAlgoName), []byte(v.defCustomStr))
d0.Write([]byte(testString))
ref := make([]byte, 32)
d0.Read(ref)
d1 := v.constructor([]byte(v.defAlgoName), []byte(v.defCustomStr))
d1.Write([]byte(testString))
var multiple []byte
for range ref {
one := make([]byte, 1)
d1.Read(one)
multiple = append(multiple, one...)
}
if !bytes.Equal(ref, multiple) {
t.Errorf("%s (%s): squeezing %d bytes one at a time failed", algo, impl, len(ref))
}
}
})
}
// sequentialBytes produces a buffer of size consecutive bytes 0x00, 0x01, ..., used for testing.
//
// The alignment of each slice is intentionally randomized to detect alignment
// issues in the implementation. See https://golang.org/issue/37644.
// Ideally, the compiler should fuzz the alignment itself.
// (See https://golang.org/issue/35128.)
func sequentialBytes(size int) []byte {
alignmentOffset := rand.Intn(8)
result := make([]byte, size+alignmentOffset)[alignmentOffset:]
for i := range result {
result[i] = byte(i)
}
return result
}
func TestReset(t *testing.T) {
out1 := make([]byte, 32)
out2 := make([]byte, 32)
for _, v := range testShakes {
// Calculate hash for the first time
c := v.constructor(nil, []byte{0x99, 0x98})
c.Write(sequentialBytes(0x100))
c.Read(out1)
// Calculate hash again
c.Reset()
c.Write(sequentialBytes(0x100))
c.Read(out2)
if !bytes.Equal(out1, out2) {
t.Error("\nExpected:\n", out1, "\ngot:\n", out2)
}
}
}
func TestClone(t *testing.T) {
out1 := make([]byte, 16)
out2 := make([]byte, 16)
// Test for sizes smaller and larger than block size.
for _, size := range []int{0x1, 0x100} {
in := sequentialBytes(size)
for _, v := range testShakes {
h1 := v.constructor(nil, []byte{0x01})
h1.Write([]byte{0x01})
h2 := h1.Clone()
h1.Write(in)
h1.Read(out1)
h2.Write(in)
h2.Read(out2)
if !bytes.Equal(out1, out2) {
t.Error("\nExpected:\n", hex.EncodeToString(out1), "\ngot:\n", hex.EncodeToString(out2))
}
}
}
}
// BenchmarkPermutationFunction measures the speed of the permutation function
// with no input data.
func BenchmarkPermutationFunction(b *testing.B) {
b.SetBytes(int64(200))
var lanes [25]uint64
for i := 0; i < b.N; i++ {
keccakF1600(&lanes)
}
}
// benchmarkHash tests the speed to hash num buffers of buflen each.
func benchmarkHash(b *testing.B, h hash.Hash, size, num int) {
b.StopTimer()
h.Reset()
data := sequentialBytes(size)
b.SetBytes(int64(size * num))
b.StartTimer()
var state []byte
for i := 0; i < b.N; i++ {
for j := 0; j < num; j++ {
h.Write(data)
}
state = h.Sum(state[:0])
}
b.StopTimer()
h.Reset()
}
// benchmarkShake is specialized to the Shake instances, which don't
// require a copy on reading output.
func benchmarkShake(b *testing.B, h ShakeHash, size, num int) {
b.StopTimer()
h.Reset()
data := sequentialBytes(size)
d := make([]byte, 32)
b.SetBytes(int64(size * num))
b.StartTimer()
for i := 0; i < b.N; i++ {
h.Reset()
for j := 0; j < num; j++ {
h.Write(data)
}
h.Read(d)
}
}
func BenchmarkSha3_512_MTU(b *testing.B) { benchmarkHash(b, New512(), 1350, 1) }
func BenchmarkSha3_384_MTU(b *testing.B) { benchmarkHash(b, New384(), 1350, 1) }
func BenchmarkSha3_256_MTU(b *testing.B) { benchmarkHash(b, New256(), 1350, 1) }
func BenchmarkSha3_224_MTU(b *testing.B) { benchmarkHash(b, New224(), 1350, 1) }
func BenchmarkShake128_MTU(b *testing.B) { benchmarkShake(b, NewShake128(), 1350, 1) }
func BenchmarkShake256_MTU(b *testing.B) { benchmarkShake(b, NewShake256(), 1350, 1) }
func BenchmarkShake256_16x(b *testing.B) { benchmarkShake(b, NewShake256(), 16, 1024) }
func BenchmarkShake256_1MiB(b *testing.B) { benchmarkShake(b, NewShake256(), 1024, 1024) }
func BenchmarkSha3_512_1MiB(b *testing.B) { benchmarkHash(b, New512(), 1024, 1024) }
func Example_sum() {
buf := []byte("some data to hash")
// A hash needs to be 64 bytes long to have 256-bit collision resistance.
h := make([]byte, 64)
// Compute a 64-byte hash of buf and put it in h.
ShakeSum256(h, buf)
fmt.Printf("%x\n", h)
// Output: 0f65fe41fc353e52c55667bb9e2b27bfcc8476f2c413e9437d272ee3194a4e3146d05ec04a25d16b8f577c19b82d16b1424c3e022e783d2b4da98de3658d363d
}
func Example_mac() {
k := []byte("this is a secret key; you should generate a strong random key that's at least 32 bytes long")
buf := []byte("and this is some data to authenticate")
// A MAC with 32 bytes of output has 256-bit security strength -- if you use at least a 32-byte-long key.
h := make([]byte, 32)
d := NewShake256()
// Write the key into the hash.
d.Write(k)
// Now write the data.
d.Write(buf)
// Read 32 bytes of output from the hash into h.
d.Read(h)
fmt.Printf("%x\n", h)
// Output: 78de2974bd2711d5549ffd32b753ef0f5fa80a0db2556db60f0987eb8a9218ff
}
func ExampleNewCShake256() {
out := make([]byte, 32)
msg := []byte("The quick brown fox jumps over the lazy dog")
// Example 1: Simple cshake
c1 := NewCShake256([]byte("NAME"), []byte("Partition1"))
c1.Write(msg)
c1.Read(out)
fmt.Println(hex.EncodeToString(out))
// Example 2: Different customization string produces different digest
c1 = NewCShake256([]byte("NAME"), []byte("Partition2"))
c1.Write(msg)
c1.Read(out)
fmt.Println(hex.EncodeToString(out))
// Example 3: Longer output length produces longer digest
out = make([]byte, 64)
c1 = NewCShake256([]byte("NAME"), []byte("Partition1"))
c1.Write(msg)
c1.Read(out)
fmt.Println(hex.EncodeToString(out))
// Example 4: Next read produces different result
c1.Read(out)
fmt.Println(hex.EncodeToString(out))
// Output:
//a90a4c6ca9af2156eba43dc8398279e6b60dcd56fb21837afe6c308fd4ceb05b
//a8db03e71f3e4da5c4eee9d28333cdd355f51cef3c567e59be5beb4ecdbb28f0
//a90a4c6ca9af2156eba43dc8398279e6b60dcd56fb21837afe6c308fd4ceb05b9dd98c6ee866ca7dc5a39d53e960f400bcd5a19c8a2d6ec6459f63696543a0d8
//85e73a72228d08b46515553ca3a29d47df3047e5d84b12d6c2c63e579f4fd1105716b7838e92e981863907f434bfd4443c9e56ea09da998d2f9b47db71988109
}
|