File: otr.go

package info (click to toggle)
golang-go.crypto 1:0.0~git20170407.0.55a552f+REALLY.0.0~git20161012.0.5f31782-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch, stretch-backports
  • size: 3,452 kB
  • sloc: asm: 5,761; ansic: 152; makefile: 11
file content (1408 lines) | stat: -rw-r--r-- 35,919 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package otr implements the Off The Record protocol as specified in
// http://www.cypherpunks.ca/otr/Protocol-v2-3.1.0.html
package otr // import "golang.org/x/crypto/otr"

import (
	"bytes"
	"crypto/aes"
	"crypto/cipher"
	"crypto/dsa"
	"crypto/hmac"
	"crypto/rand"
	"crypto/sha1"
	"crypto/sha256"
	"crypto/subtle"
	"encoding/base64"
	"encoding/hex"
	"errors"
	"hash"
	"io"
	"math/big"
	"strconv"
)

// SecurityChange describes a change in the security state of a Conversation.
type SecurityChange int

const (
	NoChange SecurityChange = iota
	// NewKeys indicates that a key exchange has completed. This occurs
	// when a conversation first becomes encrypted, and when the keys are
	// renegotiated within an encrypted conversation.
	NewKeys
	// SMPSecretNeeded indicates that the peer has started an
	// authentication and that we need to supply a secret. Call SMPQuestion
	// to get the optional, human readable challenge and then Authenticate
	// to supply the matching secret.
	SMPSecretNeeded
	// SMPComplete indicates that an authentication completed. The identity
	// of the peer has now been confirmed.
	SMPComplete
	// SMPFailed indicates that an authentication failed.
	SMPFailed
	// ConversationEnded indicates that the peer ended the secure
	// conversation.
	ConversationEnded
)

// QueryMessage can be sent to a peer to start an OTR conversation.
var QueryMessage = "?OTRv2?"

// ErrorPrefix can be used to make an OTR error by appending an error message
// to it.
var ErrorPrefix = "?OTR Error:"

var (
	fragmentPartSeparator = []byte(",")
	fragmentPrefix        = []byte("?OTR,")
	msgPrefix             = []byte("?OTR:")
	queryMarker           = []byte("?OTR")
)

// isQuery attempts to parse an OTR query from msg and returns the greatest
// common version, or 0 if msg is not an OTR query.
func isQuery(msg []byte) (greatestCommonVersion int) {
	pos := bytes.Index(msg, queryMarker)
	if pos == -1 {
		return 0
	}
	for i, c := range msg[pos+len(queryMarker):] {
		if i == 0 {
			if c == '?' {
				// Indicates support for version 1, but we don't
				// implement that.
				continue
			}

			if c != 'v' {
				// Invalid message
				return 0
			}

			continue
		}

		if c == '?' {
			// End of message
			return
		}

		if c == ' ' || c == '\t' {
			// Probably an invalid message
			return 0
		}

		if c == '2' {
			greatestCommonVersion = 2
		}
	}

	return 0
}

const (
	statePlaintext = iota
	stateEncrypted
	stateFinished
)

const (
	authStateNone = iota
	authStateAwaitingDHKey
	authStateAwaitingRevealSig
	authStateAwaitingSig
)

const (
	msgTypeDHCommit  = 2
	msgTypeData      = 3
	msgTypeDHKey     = 10
	msgTypeRevealSig = 17
	msgTypeSig       = 18
)

const (
	// If the requested fragment size is less than this, it will be ignored.
	minFragmentSize = 18
	// Messages are padded to a multiple of this number of bytes.
	paddingGranularity = 256
	// The number of bytes in a Diffie-Hellman private value (320-bits).
	dhPrivateBytes = 40
	// The number of bytes needed to represent an element of the DSA
	// subgroup (160-bits).
	dsaSubgroupBytes = 20
	// The number of bytes of the MAC that are sent on the wire (160-bits).
	macPrefixBytes = 20
)

// These are the global, common group parameters for OTR.
var (
	p       *big.Int // group prime
	g       *big.Int // group generator
	q       *big.Int // group order
	pMinus2 *big.Int
)

func init() {
	p, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", 16)
	q, _ = new(big.Int).SetString("7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68948127044533E63A0105DF531D89CD9128A5043CC71A026EF7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6F71C35FDAD44CFD2D74F9208BE258FF324943328F6722D9EE1003E5C50B1DF82CC6D241B0E2AE9CD348B1FD47E9267AFC1B2AE91EE51D6CB0E3179AB1042A95DCF6A9483B84B4B36B3861AA7255E4C0278BA36046511B993FFFFFFFFFFFFFFFF", 16)
	g = new(big.Int).SetInt64(2)
	pMinus2 = new(big.Int).Sub(p, g)
}

// Conversation represents a relation with a peer. The zero value is a valid
// Conversation, although PrivateKey must be set.
//
// When communicating with a peer, all inbound messages should be passed to
// Conversation.Receive and all outbound messages to Conversation.Send. The
// Conversation will take care of maintaining the encryption state and
// negotiating encryption as needed.
type Conversation struct {
	// PrivateKey contains the private key to use to sign key exchanges.
	PrivateKey *PrivateKey

	// Rand can be set to override the entropy source. Otherwise,
	// crypto/rand will be used.
	Rand io.Reader
	// If FragmentSize is set, all messages produced by Receive and Send
	// will be fragmented into messages of, at most, this number of bytes.
	FragmentSize int

	// Once Receive has returned NewKeys once, the following fields are
	// valid.
	SSID           [8]byte
	TheirPublicKey PublicKey

	state, authState int

	r       [16]byte
	x, y    *big.Int
	gx, gy  *big.Int
	gxBytes []byte
	digest  [sha256.Size]byte

	revealKeys, sigKeys akeKeys

	myKeyId         uint32
	myCurrentDHPub  *big.Int
	myCurrentDHPriv *big.Int
	myLastDHPub     *big.Int
	myLastDHPriv    *big.Int

	theirKeyId        uint32
	theirCurrentDHPub *big.Int
	theirLastDHPub    *big.Int

	keySlots [4]keySlot

	myCounter    [8]byte
	theirLastCtr [8]byte
	oldMACs      []byte

	k, n int // fragment state
	frag []byte

	smp smpState
}

// A keySlot contains key material for a specific (their keyid, my keyid) pair.
type keySlot struct {
	// used is true if this slot is valid. If false, it's free for reuse.
	used                   bool
	theirKeyId             uint32
	myKeyId                uint32
	sendAESKey, recvAESKey []byte
	sendMACKey, recvMACKey []byte
	theirLastCtr           [8]byte
}

// akeKeys are generated during key exchange. There's one set for the reveal
// signature message and another for the signature message. In the protocol
// spec the latter are indicated with a prime mark.
type akeKeys struct {
	c      [16]byte
	m1, m2 [32]byte
}

func (c *Conversation) rand() io.Reader {
	if c.Rand != nil {
		return c.Rand
	}
	return rand.Reader
}

func (c *Conversation) randMPI(buf []byte) *big.Int {
	_, err := io.ReadFull(c.rand(), buf)
	if err != nil {
		panic("otr: short read from random source")
	}

	return new(big.Int).SetBytes(buf)
}

// tlv represents the type-length value from the protocol.
type tlv struct {
	typ, length uint16
	data        []byte
}

const (
	tlvTypePadding          = 0
	tlvTypeDisconnected     = 1
	tlvTypeSMP1             = 2
	tlvTypeSMP2             = 3
	tlvTypeSMP3             = 4
	tlvTypeSMP4             = 5
	tlvTypeSMPAbort         = 6
	tlvTypeSMP1WithQuestion = 7
)

// Receive handles a message from a peer. It returns a human readable message,
// an indicator of whether that message was encrypted, a hint about the
// encryption state and zero or more messages to send back to the peer.
// These messages do not need to be passed to Send before transmission.
func (c *Conversation) Receive(in []byte) (out []byte, encrypted bool, change SecurityChange, toSend [][]byte, err error) {
	if bytes.HasPrefix(in, fragmentPrefix) {
		in, err = c.processFragment(in)
		if in == nil || err != nil {
			return
		}
	}

	if bytes.HasPrefix(in, msgPrefix) && in[len(in)-1] == '.' {
		in = in[len(msgPrefix) : len(in)-1]
	} else if version := isQuery(in); version > 0 {
		c.authState = authStateAwaitingDHKey
		c.reset()
		toSend = c.encode(c.generateDHCommit())
		return
	} else {
		// plaintext message
		out = in
		return
	}

	msg := make([]byte, base64.StdEncoding.DecodedLen(len(in)))
	msgLen, err := base64.StdEncoding.Decode(msg, in)
	if err != nil {
		err = errors.New("otr: invalid base64 encoding in message")
		return
	}
	msg = msg[:msgLen]

	// The first two bytes are the protocol version (2)
	if len(msg) < 3 || msg[0] != 0 || msg[1] != 2 {
		err = errors.New("otr: invalid OTR message")
		return
	}

	msgType := int(msg[2])
	msg = msg[3:]

	switch msgType {
	case msgTypeDHCommit:
		switch c.authState {
		case authStateNone:
			c.authState = authStateAwaitingRevealSig
			if err = c.processDHCommit(msg); err != nil {
				return
			}
			c.reset()
			toSend = c.encode(c.generateDHKey())
			return
		case authStateAwaitingDHKey:
			// This is a 'SYN-crossing'. The greater digest wins.
			var cmp int
			if cmp, err = c.compareToDHCommit(msg); err != nil {
				return
			}
			if cmp > 0 {
				// We win. Retransmit DH commit.
				toSend = c.encode(c.serializeDHCommit())
				return
			} else {
				// They win. We forget about our DH commit.
				c.authState = authStateAwaitingRevealSig
				if err = c.processDHCommit(msg); err != nil {
					return
				}
				c.reset()
				toSend = c.encode(c.generateDHKey())
				return
			}
		case authStateAwaitingRevealSig:
			if err = c.processDHCommit(msg); err != nil {
				return
			}
			toSend = c.encode(c.serializeDHKey())
		case authStateAwaitingSig:
			if err = c.processDHCommit(msg); err != nil {
				return
			}
			c.reset()
			toSend = c.encode(c.generateDHKey())
			c.authState = authStateAwaitingRevealSig
		default:
			panic("bad state")
		}
	case msgTypeDHKey:
		switch c.authState {
		case authStateAwaitingDHKey:
			var isSame bool
			if isSame, err = c.processDHKey(msg); err != nil {
				return
			}
			if isSame {
				err = errors.New("otr: unexpected duplicate DH key")
				return
			}
			toSend = c.encode(c.generateRevealSig())
			c.authState = authStateAwaitingSig
		case authStateAwaitingSig:
			var isSame bool
			if isSame, err = c.processDHKey(msg); err != nil {
				return
			}
			if isSame {
				toSend = c.encode(c.serializeDHKey())
			}
		}
	case msgTypeRevealSig:
		if c.authState != authStateAwaitingRevealSig {
			return
		}
		if err = c.processRevealSig(msg); err != nil {
			return
		}
		toSend = c.encode(c.generateSig())
		c.authState = authStateNone
		c.state = stateEncrypted
		change = NewKeys
	case msgTypeSig:
		if c.authState != authStateAwaitingSig {
			return
		}
		if err = c.processSig(msg); err != nil {
			return
		}
		c.authState = authStateNone
		c.state = stateEncrypted
		change = NewKeys
	case msgTypeData:
		if c.state != stateEncrypted {
			err = errors.New("otr: encrypted message received without encrypted session established")
			return
		}
		var tlvs []tlv
		out, tlvs, err = c.processData(msg)
		encrypted = true

	EachTLV:
		for _, inTLV := range tlvs {
			switch inTLV.typ {
			case tlvTypeDisconnected:
				change = ConversationEnded
				c.state = stateFinished
				break EachTLV
			case tlvTypeSMP1, tlvTypeSMP2, tlvTypeSMP3, tlvTypeSMP4, tlvTypeSMPAbort, tlvTypeSMP1WithQuestion:
				var reply tlv
				var complete bool
				reply, complete, err = c.processSMP(inTLV)
				if err == smpSecretMissingError {
					err = nil
					change = SMPSecretNeeded
					c.smp.saved = &inTLV
					return
				}
				if err == smpFailureError {
					err = nil
					change = SMPFailed
				} else if complete {
					change = SMPComplete
				}
				if reply.typ != 0 {
					toSend = c.encode(c.generateData(nil, &reply))
				}
				break EachTLV
			default:
				// skip unknown TLVs
			}
		}
	default:
		err = errors.New("otr: unknown message type " + strconv.Itoa(msgType))
	}

	return
}

// Send takes a human readable message from the local user, possibly encrypts
// it and returns zero one or more messages to send to the peer.
func (c *Conversation) Send(msg []byte) ([][]byte, error) {
	switch c.state {
	case statePlaintext:
		return [][]byte{msg}, nil
	case stateEncrypted:
		return c.encode(c.generateData(msg, nil)), nil
	case stateFinished:
		return nil, errors.New("otr: cannot send message because secure conversation has finished")
	}

	return nil, errors.New("otr: cannot send message in current state")
}

// SMPQuestion returns the human readable challenge question from the peer.
// It's only valid after Receive has returned SMPSecretNeeded.
func (c *Conversation) SMPQuestion() string {
	return c.smp.question
}

// Authenticate begins an authentication with the peer. Authentication involves
// an optional challenge message and a shared secret. The authentication
// proceeds until either Receive returns SMPComplete, SMPSecretNeeded (which
// indicates that a new authentication is happening and thus this one was
// aborted) or SMPFailed.
func (c *Conversation) Authenticate(question string, mutualSecret []byte) (toSend [][]byte, err error) {
	if c.state != stateEncrypted {
		err = errors.New("otr: can't authenticate a peer without a secure conversation established")
		return
	}

	if c.smp.saved != nil {
		c.calcSMPSecret(mutualSecret, false /* they started it */)

		var out tlv
		var complete bool
		out, complete, err = c.processSMP(*c.smp.saved)
		if complete {
			panic("SMP completed on the first message")
		}
		c.smp.saved = nil
		if out.typ != 0 {
			toSend = c.encode(c.generateData(nil, &out))
		}
		return
	}

	c.calcSMPSecret(mutualSecret, true /* we started it */)
	outs := c.startSMP(question)
	for _, out := range outs {
		toSend = append(toSend, c.encode(c.generateData(nil, &out))...)
	}
	return
}

// End ends a secure conversation by generating a termination message for
// the peer and switches to unencrypted communication.
func (c *Conversation) End() (toSend [][]byte) {
	switch c.state {
	case statePlaintext:
		return nil
	case stateEncrypted:
		c.state = statePlaintext
		return c.encode(c.generateData(nil, &tlv{typ: tlvTypeDisconnected}))
	case stateFinished:
		c.state = statePlaintext
		return nil
	}
	panic("unreachable")
}

// IsEncrypted returns true if a message passed to Send would be encrypted
// before transmission. This result remains valid until the next call to
// Receive or End, which may change the state of the Conversation.
func (c *Conversation) IsEncrypted() bool {
	return c.state == stateEncrypted
}

var fragmentError = errors.New("otr: invalid OTR fragment")

// processFragment processes a fragmented OTR message and possibly returns a
// complete message. Fragmented messages look like "?OTR,k,n,msg," where k is
// the fragment number (starting from 1), n is the number of fragments in this
// message and msg is a substring of the base64 encoded message.
func (c *Conversation) processFragment(in []byte) (out []byte, err error) {
	in = in[len(fragmentPrefix):] // remove "?OTR,"
	parts := bytes.Split(in, fragmentPartSeparator)
	if len(parts) != 4 || len(parts[3]) != 0 {
		return nil, fragmentError
	}

	k, err := strconv.Atoi(string(parts[0]))
	if err != nil {
		return nil, fragmentError
	}

	n, err := strconv.Atoi(string(parts[1]))
	if err != nil {
		return nil, fragmentError
	}

	if k < 1 || n < 1 || k > n {
		return nil, fragmentError
	}

	if k == 1 {
		c.frag = append(c.frag[:0], parts[2]...)
		c.k, c.n = k, n
	} else if n == c.n && k == c.k+1 {
		c.frag = append(c.frag, parts[2]...)
		c.k++
	} else {
		c.frag = c.frag[:0]
		c.n, c.k = 0, 0
	}

	if c.n > 0 && c.k == c.n {
		c.n, c.k = 0, 0
		return c.frag, nil
	}

	return nil, nil
}

func (c *Conversation) generateDHCommit() []byte {
	_, err := io.ReadFull(c.rand(), c.r[:])
	if err != nil {
		panic("otr: short read from random source")
	}

	var xBytes [dhPrivateBytes]byte
	c.x = c.randMPI(xBytes[:])
	c.gx = new(big.Int).Exp(g, c.x, p)
	c.gy = nil
	c.gxBytes = appendMPI(nil, c.gx)

	h := sha256.New()
	h.Write(c.gxBytes)
	h.Sum(c.digest[:0])

	aesCipher, err := aes.NewCipher(c.r[:])
	if err != nil {
		panic(err.Error())
	}

	var iv [aes.BlockSize]byte
	ctr := cipher.NewCTR(aesCipher, iv[:])
	ctr.XORKeyStream(c.gxBytes, c.gxBytes)

	return c.serializeDHCommit()
}

func (c *Conversation) serializeDHCommit() []byte {
	var ret []byte
	ret = appendU16(ret, 2) // protocol version
	ret = append(ret, msgTypeDHCommit)
	ret = appendData(ret, c.gxBytes)
	ret = appendData(ret, c.digest[:])
	return ret
}

func (c *Conversation) processDHCommit(in []byte) error {
	var ok1, ok2 bool
	c.gxBytes, in, ok1 = getData(in)
	digest, in, ok2 := getData(in)
	if !ok1 || !ok2 || len(in) > 0 {
		return errors.New("otr: corrupt DH commit message")
	}
	copy(c.digest[:], digest)
	return nil
}

func (c *Conversation) compareToDHCommit(in []byte) (int, error) {
	_, in, ok1 := getData(in)
	digest, in, ok2 := getData(in)
	if !ok1 || !ok2 || len(in) > 0 {
		return 0, errors.New("otr: corrupt DH commit message")
	}
	return bytes.Compare(c.digest[:], digest), nil
}

func (c *Conversation) generateDHKey() []byte {
	var yBytes [dhPrivateBytes]byte
	c.y = c.randMPI(yBytes[:])
	c.gy = new(big.Int).Exp(g, c.y, p)
	return c.serializeDHKey()
}

func (c *Conversation) serializeDHKey() []byte {
	var ret []byte
	ret = appendU16(ret, 2) // protocol version
	ret = append(ret, msgTypeDHKey)
	ret = appendMPI(ret, c.gy)
	return ret
}

func (c *Conversation) processDHKey(in []byte) (isSame bool, err error) {
	gy, in, ok := getMPI(in)
	if !ok {
		err = errors.New("otr: corrupt DH key message")
		return
	}
	if gy.Cmp(g) < 0 || gy.Cmp(pMinus2) > 0 {
		err = errors.New("otr: DH value out of range")
		return
	}
	if c.gy != nil {
		isSame = c.gy.Cmp(gy) == 0
		return
	}
	c.gy = gy
	return
}

func (c *Conversation) generateEncryptedSignature(keys *akeKeys, xFirst bool) ([]byte, []byte) {
	var xb []byte
	xb = c.PrivateKey.PublicKey.Serialize(xb)

	var verifyData []byte
	if xFirst {
		verifyData = appendMPI(verifyData, c.gx)
		verifyData = appendMPI(verifyData, c.gy)
	} else {
		verifyData = appendMPI(verifyData, c.gy)
		verifyData = appendMPI(verifyData, c.gx)
	}
	verifyData = append(verifyData, xb...)
	verifyData = appendU32(verifyData, c.myKeyId)

	mac := hmac.New(sha256.New, keys.m1[:])
	mac.Write(verifyData)
	mb := mac.Sum(nil)

	xb = appendU32(xb, c.myKeyId)
	xb = append(xb, c.PrivateKey.Sign(c.rand(), mb)...)

	aesCipher, err := aes.NewCipher(keys.c[:])
	if err != nil {
		panic(err.Error())
	}
	var iv [aes.BlockSize]byte
	ctr := cipher.NewCTR(aesCipher, iv[:])
	ctr.XORKeyStream(xb, xb)

	mac = hmac.New(sha256.New, keys.m2[:])
	encryptedSig := appendData(nil, xb)
	mac.Write(encryptedSig)

	return encryptedSig, mac.Sum(nil)
}

func (c *Conversation) generateRevealSig() []byte {
	s := new(big.Int).Exp(c.gy, c.x, p)
	c.calcAKEKeys(s)
	c.myKeyId++

	encryptedSig, mac := c.generateEncryptedSignature(&c.revealKeys, true /* gx comes first */)

	c.myCurrentDHPub = c.gx
	c.myCurrentDHPriv = c.x
	c.rotateDHKeys()
	incCounter(&c.myCounter)

	var ret []byte
	ret = appendU16(ret, 2)
	ret = append(ret, msgTypeRevealSig)
	ret = appendData(ret, c.r[:])
	ret = append(ret, encryptedSig...)
	ret = append(ret, mac[:20]...)
	return ret
}

func (c *Conversation) processEncryptedSig(encryptedSig, theirMAC []byte, keys *akeKeys, xFirst bool) error {
	mac := hmac.New(sha256.New, keys.m2[:])
	mac.Write(appendData(nil, encryptedSig))
	myMAC := mac.Sum(nil)[:20]

	if len(myMAC) != len(theirMAC) || subtle.ConstantTimeCompare(myMAC, theirMAC) == 0 {
		return errors.New("bad signature MAC in encrypted signature")
	}

	aesCipher, err := aes.NewCipher(keys.c[:])
	if err != nil {
		panic(err.Error())
	}
	var iv [aes.BlockSize]byte
	ctr := cipher.NewCTR(aesCipher, iv[:])
	ctr.XORKeyStream(encryptedSig, encryptedSig)

	sig := encryptedSig
	sig, ok1 := c.TheirPublicKey.Parse(sig)
	keyId, sig, ok2 := getU32(sig)
	if !ok1 || !ok2 {
		return errors.New("otr: corrupt encrypted signature")
	}

	var verifyData []byte
	if xFirst {
		verifyData = appendMPI(verifyData, c.gx)
		verifyData = appendMPI(verifyData, c.gy)
	} else {
		verifyData = appendMPI(verifyData, c.gy)
		verifyData = appendMPI(verifyData, c.gx)
	}
	verifyData = c.TheirPublicKey.Serialize(verifyData)
	verifyData = appendU32(verifyData, keyId)

	mac = hmac.New(sha256.New, keys.m1[:])
	mac.Write(verifyData)
	mb := mac.Sum(nil)

	sig, ok1 = c.TheirPublicKey.Verify(mb, sig)
	if !ok1 {
		return errors.New("bad signature in encrypted signature")
	}
	if len(sig) > 0 {
		return errors.New("corrupt encrypted signature")
	}

	c.theirKeyId = keyId
	zero(c.theirLastCtr[:])
	return nil
}

func (c *Conversation) processRevealSig(in []byte) error {
	r, in, ok1 := getData(in)
	encryptedSig, in, ok2 := getData(in)
	theirMAC := in
	if !ok1 || !ok2 || len(theirMAC) != 20 {
		return errors.New("otr: corrupt reveal signature message")
	}

	aesCipher, err := aes.NewCipher(r)
	if err != nil {
		return errors.New("otr: cannot create AES cipher from reveal signature message: " + err.Error())
	}
	var iv [aes.BlockSize]byte
	ctr := cipher.NewCTR(aesCipher, iv[:])
	ctr.XORKeyStream(c.gxBytes, c.gxBytes)
	h := sha256.New()
	h.Write(c.gxBytes)
	digest := h.Sum(nil)
	if len(digest) != len(c.digest) || subtle.ConstantTimeCompare(digest, c.digest[:]) == 0 {
		return errors.New("otr: bad commit MAC in reveal signature message")
	}
	var rest []byte
	c.gx, rest, ok1 = getMPI(c.gxBytes)
	if !ok1 || len(rest) > 0 {
		return errors.New("otr: gx corrupt after decryption")
	}
	if c.gx.Cmp(g) < 0 || c.gx.Cmp(pMinus2) > 0 {
		return errors.New("otr: DH value out of range")
	}
	s := new(big.Int).Exp(c.gx, c.y, p)
	c.calcAKEKeys(s)

	if err := c.processEncryptedSig(encryptedSig, theirMAC, &c.revealKeys, true /* gx comes first */); err != nil {
		return errors.New("otr: in reveal signature message: " + err.Error())
	}

	c.theirCurrentDHPub = c.gx
	c.theirLastDHPub = nil

	return nil
}

func (c *Conversation) generateSig() []byte {
	c.myKeyId++

	encryptedSig, mac := c.generateEncryptedSignature(&c.sigKeys, false /* gy comes first */)

	c.myCurrentDHPub = c.gy
	c.myCurrentDHPriv = c.y
	c.rotateDHKeys()
	incCounter(&c.myCounter)

	var ret []byte
	ret = appendU16(ret, 2)
	ret = append(ret, msgTypeSig)
	ret = append(ret, encryptedSig...)
	ret = append(ret, mac[:macPrefixBytes]...)
	return ret
}

func (c *Conversation) processSig(in []byte) error {
	encryptedSig, in, ok1 := getData(in)
	theirMAC := in
	if !ok1 || len(theirMAC) != macPrefixBytes {
		return errors.New("otr: corrupt signature message")
	}

	if err := c.processEncryptedSig(encryptedSig, theirMAC, &c.sigKeys, false /* gy comes first */); err != nil {
		return errors.New("otr: in signature message: " + err.Error())
	}

	c.theirCurrentDHPub = c.gy
	c.theirLastDHPub = nil

	return nil
}

func (c *Conversation) rotateDHKeys() {
	// evict slots using our retired key id
	for i := range c.keySlots {
		slot := &c.keySlots[i]
		if slot.used && slot.myKeyId == c.myKeyId-1 {
			slot.used = false
			c.oldMACs = append(c.oldMACs, slot.recvMACKey...)
		}
	}

	c.myLastDHPriv = c.myCurrentDHPriv
	c.myLastDHPub = c.myCurrentDHPub

	var xBytes [dhPrivateBytes]byte
	c.myCurrentDHPriv = c.randMPI(xBytes[:])
	c.myCurrentDHPub = new(big.Int).Exp(g, c.myCurrentDHPriv, p)
	c.myKeyId++
}

func (c *Conversation) processData(in []byte) (out []byte, tlvs []tlv, err error) {
	origIn := in
	flags, in, ok1 := getU8(in)
	theirKeyId, in, ok2 := getU32(in)
	myKeyId, in, ok3 := getU32(in)
	y, in, ok4 := getMPI(in)
	counter, in, ok5 := getNBytes(in, 8)
	encrypted, in, ok6 := getData(in)
	macedData := origIn[:len(origIn)-len(in)]
	theirMAC, in, ok7 := getNBytes(in, macPrefixBytes)
	_, in, ok8 := getData(in)
	if !ok1 || !ok2 || !ok3 || !ok4 || !ok5 || !ok6 || !ok7 || !ok8 || len(in) > 0 {
		err = errors.New("otr: corrupt data message")
		return
	}

	ignoreErrors := flags&1 != 0

	slot, err := c.calcDataKeys(myKeyId, theirKeyId)
	if err != nil {
		if ignoreErrors {
			err = nil
		}
		return
	}

	mac := hmac.New(sha1.New, slot.recvMACKey)
	mac.Write([]byte{0, 2, 3})
	mac.Write(macedData)
	myMAC := mac.Sum(nil)
	if len(myMAC) != len(theirMAC) || subtle.ConstantTimeCompare(myMAC, theirMAC) == 0 {
		if !ignoreErrors {
			err = errors.New("otr: bad MAC on data message")
		}
		return
	}

	if bytes.Compare(counter, slot.theirLastCtr[:]) <= 0 {
		err = errors.New("otr: counter regressed")
		return
	}
	copy(slot.theirLastCtr[:], counter)

	var iv [aes.BlockSize]byte
	copy(iv[:], counter)
	aesCipher, err := aes.NewCipher(slot.recvAESKey)
	if err != nil {
		panic(err.Error())
	}
	ctr := cipher.NewCTR(aesCipher, iv[:])
	ctr.XORKeyStream(encrypted, encrypted)
	decrypted := encrypted

	if myKeyId == c.myKeyId {
		c.rotateDHKeys()
	}
	if theirKeyId == c.theirKeyId {
		// evict slots using their retired key id
		for i := range c.keySlots {
			slot := &c.keySlots[i]
			if slot.used && slot.theirKeyId == theirKeyId-1 {
				slot.used = false
				c.oldMACs = append(c.oldMACs, slot.recvMACKey...)
			}
		}

		c.theirLastDHPub = c.theirCurrentDHPub
		c.theirKeyId++
		c.theirCurrentDHPub = y
	}

	if nulPos := bytes.IndexByte(decrypted, 0); nulPos >= 0 {
		out = decrypted[:nulPos]
		tlvData := decrypted[nulPos+1:]
		for len(tlvData) > 0 {
			var t tlv
			var ok1, ok2, ok3 bool

			t.typ, tlvData, ok1 = getU16(tlvData)
			t.length, tlvData, ok2 = getU16(tlvData)
			t.data, tlvData, ok3 = getNBytes(tlvData, int(t.length))
			if !ok1 || !ok2 || !ok3 {
				err = errors.New("otr: corrupt tlv data")
			}
			tlvs = append(tlvs, t)
		}
	} else {
		out = decrypted
	}

	return
}

func (c *Conversation) generateData(msg []byte, extra *tlv) []byte {
	slot, err := c.calcDataKeys(c.myKeyId-1, c.theirKeyId)
	if err != nil {
		panic("otr: failed to generate sending keys: " + err.Error())
	}

	var plaintext []byte
	plaintext = append(plaintext, msg...)
	plaintext = append(plaintext, 0)

	padding := paddingGranularity - ((len(plaintext) + 4) % paddingGranularity)
	plaintext = appendU16(plaintext, tlvTypePadding)
	plaintext = appendU16(plaintext, uint16(padding))
	for i := 0; i < padding; i++ {
		plaintext = append(plaintext, 0)
	}

	if extra != nil {
		plaintext = appendU16(plaintext, extra.typ)
		plaintext = appendU16(plaintext, uint16(len(extra.data)))
		plaintext = append(plaintext, extra.data...)
	}

	encrypted := make([]byte, len(plaintext))

	var iv [aes.BlockSize]byte
	copy(iv[:], c.myCounter[:])
	aesCipher, err := aes.NewCipher(slot.sendAESKey)
	if err != nil {
		panic(err.Error())
	}
	ctr := cipher.NewCTR(aesCipher, iv[:])
	ctr.XORKeyStream(encrypted, plaintext)

	var ret []byte
	ret = appendU16(ret, 2)
	ret = append(ret, msgTypeData)
	ret = append(ret, 0 /* flags */)
	ret = appendU32(ret, c.myKeyId-1)
	ret = appendU32(ret, c.theirKeyId)
	ret = appendMPI(ret, c.myCurrentDHPub)
	ret = append(ret, c.myCounter[:]...)
	ret = appendData(ret, encrypted)

	mac := hmac.New(sha1.New, slot.sendMACKey)
	mac.Write(ret)
	ret = append(ret, mac.Sum(nil)[:macPrefixBytes]...)
	ret = appendData(ret, c.oldMACs)
	c.oldMACs = nil
	incCounter(&c.myCounter)

	return ret
}

func incCounter(counter *[8]byte) {
	for i := 7; i >= 0; i-- {
		counter[i]++
		if counter[i] > 0 {
			break
		}
	}
}

// calcDataKeys computes the keys used to encrypt a data message given the key
// IDs.
func (c *Conversation) calcDataKeys(myKeyId, theirKeyId uint32) (slot *keySlot, err error) {
	// Check for a cache hit.
	for i := range c.keySlots {
		slot = &c.keySlots[i]
		if slot.used && slot.theirKeyId == theirKeyId && slot.myKeyId == myKeyId {
			return
		}
	}

	// Find an empty slot to write into.
	slot = nil
	for i := range c.keySlots {
		if !c.keySlots[i].used {
			slot = &c.keySlots[i]
			break
		}
	}
	if slot == nil {
		return nil, errors.New("otr: internal error: no more key slots")
	}

	var myPriv, myPub, theirPub *big.Int

	if myKeyId == c.myKeyId {
		myPriv = c.myCurrentDHPriv
		myPub = c.myCurrentDHPub
	} else if myKeyId == c.myKeyId-1 {
		myPriv = c.myLastDHPriv
		myPub = c.myLastDHPub
	} else {
		err = errors.New("otr: peer requested keyid " + strconv.FormatUint(uint64(myKeyId), 10) + " when I'm on " + strconv.FormatUint(uint64(c.myKeyId), 10))
		return
	}

	if theirKeyId == c.theirKeyId {
		theirPub = c.theirCurrentDHPub
	} else if theirKeyId == c.theirKeyId-1 && c.theirLastDHPub != nil {
		theirPub = c.theirLastDHPub
	} else {
		err = errors.New("otr: peer requested keyid " + strconv.FormatUint(uint64(myKeyId), 10) + " when they're on " + strconv.FormatUint(uint64(c.myKeyId), 10))
		return
	}

	var sendPrefixByte, recvPrefixByte [1]byte

	if myPub.Cmp(theirPub) > 0 {
		// we're the high end
		sendPrefixByte[0], recvPrefixByte[0] = 1, 2
	} else {
		// we're the low end
		sendPrefixByte[0], recvPrefixByte[0] = 2, 1
	}

	s := new(big.Int).Exp(theirPub, myPriv, p)
	sBytes := appendMPI(nil, s)

	h := sha1.New()
	h.Write(sendPrefixByte[:])
	h.Write(sBytes)
	slot.sendAESKey = h.Sum(slot.sendAESKey[:0])[:16]

	h.Reset()
	h.Write(slot.sendAESKey)
	slot.sendMACKey = h.Sum(slot.sendMACKey[:0])

	h.Reset()
	h.Write(recvPrefixByte[:])
	h.Write(sBytes)
	slot.recvAESKey = h.Sum(slot.recvAESKey[:0])[:16]

	h.Reset()
	h.Write(slot.recvAESKey)
	slot.recvMACKey = h.Sum(slot.recvMACKey[:0])

	slot.theirKeyId = theirKeyId
	slot.myKeyId = myKeyId
	slot.used = true

	zero(slot.theirLastCtr[:])
	return
}

func (c *Conversation) calcAKEKeys(s *big.Int) {
	mpi := appendMPI(nil, s)
	h := sha256.New()

	var cBytes [32]byte
	hashWithPrefix(c.SSID[:], 0, mpi, h)

	hashWithPrefix(cBytes[:], 1, mpi, h)
	copy(c.revealKeys.c[:], cBytes[:16])
	copy(c.sigKeys.c[:], cBytes[16:])

	hashWithPrefix(c.revealKeys.m1[:], 2, mpi, h)
	hashWithPrefix(c.revealKeys.m2[:], 3, mpi, h)
	hashWithPrefix(c.sigKeys.m1[:], 4, mpi, h)
	hashWithPrefix(c.sigKeys.m2[:], 5, mpi, h)
}

func hashWithPrefix(out []byte, prefix byte, in []byte, h hash.Hash) {
	h.Reset()
	var p [1]byte
	p[0] = prefix
	h.Write(p[:])
	h.Write(in)
	if len(out) == h.Size() {
		h.Sum(out[:0])
	} else {
		digest := h.Sum(nil)
		copy(out, digest)
	}
}

func (c *Conversation) encode(msg []byte) [][]byte {
	b64 := make([]byte, base64.StdEncoding.EncodedLen(len(msg))+len(msgPrefix)+1)
	base64.StdEncoding.Encode(b64[len(msgPrefix):], msg)
	copy(b64, msgPrefix)
	b64[len(b64)-1] = '.'

	if c.FragmentSize < minFragmentSize || len(b64) <= c.FragmentSize {
		// We can encode this in a single fragment.
		return [][]byte{b64}
	}

	// We have to fragment this message.
	var ret [][]byte
	bytesPerFragment := c.FragmentSize - minFragmentSize
	numFragments := (len(b64) + bytesPerFragment) / bytesPerFragment

	for i := 0; i < numFragments; i++ {
		frag := []byte("?OTR," + strconv.Itoa(i+1) + "," + strconv.Itoa(numFragments) + ",")
		todo := bytesPerFragment
		if todo > len(b64) {
			todo = len(b64)
		}
		frag = append(frag, b64[:todo]...)
		b64 = b64[todo:]
		frag = append(frag, ',')
		ret = append(ret, frag)
	}

	return ret
}

func (c *Conversation) reset() {
	c.myKeyId = 0

	for i := range c.keySlots {
		c.keySlots[i].used = false
	}
}

type PublicKey struct {
	dsa.PublicKey
}

func (pk *PublicKey) Parse(in []byte) ([]byte, bool) {
	var ok bool
	var pubKeyType uint16

	if pubKeyType, in, ok = getU16(in); !ok || pubKeyType != 0 {
		return nil, false
	}
	if pk.P, in, ok = getMPI(in); !ok {
		return nil, false
	}
	if pk.Q, in, ok = getMPI(in); !ok {
		return nil, false
	}
	if pk.G, in, ok = getMPI(in); !ok {
		return nil, false
	}
	if pk.Y, in, ok = getMPI(in); !ok {
		return nil, false
	}

	return in, true
}

func (pk *PublicKey) Serialize(in []byte) []byte {
	in = appendU16(in, 0)
	in = appendMPI(in, pk.P)
	in = appendMPI(in, pk.Q)
	in = appendMPI(in, pk.G)
	in = appendMPI(in, pk.Y)
	return in
}

// Fingerprint returns the 20-byte, binary fingerprint of the PublicKey.
func (pk *PublicKey) Fingerprint() []byte {
	b := pk.Serialize(nil)
	h := sha1.New()
	h.Write(b[2:])
	return h.Sum(nil)
}

func (pk *PublicKey) Verify(hashed, sig []byte) ([]byte, bool) {
	if len(sig) != 2*dsaSubgroupBytes {
		return nil, false
	}
	r := new(big.Int).SetBytes(sig[:dsaSubgroupBytes])
	s := new(big.Int).SetBytes(sig[dsaSubgroupBytes:])
	ok := dsa.Verify(&pk.PublicKey, hashed, r, s)
	return sig[dsaSubgroupBytes*2:], ok
}

type PrivateKey struct {
	PublicKey
	dsa.PrivateKey
}

func (priv *PrivateKey) Sign(rand io.Reader, hashed []byte) []byte {
	r, s, err := dsa.Sign(rand, &priv.PrivateKey, hashed)
	if err != nil {
		panic(err.Error())
	}
	rBytes := r.Bytes()
	sBytes := s.Bytes()
	if len(rBytes) > dsaSubgroupBytes || len(sBytes) > dsaSubgroupBytes {
		panic("DSA signature too large")
	}

	out := make([]byte, 2*dsaSubgroupBytes)
	copy(out[dsaSubgroupBytes-len(rBytes):], rBytes)
	copy(out[len(out)-len(sBytes):], sBytes)
	return out
}

func (priv *PrivateKey) Serialize(in []byte) []byte {
	in = priv.PublicKey.Serialize(in)
	in = appendMPI(in, priv.PrivateKey.X)
	return in
}

func (priv *PrivateKey) Parse(in []byte) ([]byte, bool) {
	in, ok := priv.PublicKey.Parse(in)
	if !ok {
		return in, ok
	}
	priv.PrivateKey.PublicKey = priv.PublicKey.PublicKey
	priv.PrivateKey.X, in, ok = getMPI(in)
	return in, ok
}

func (priv *PrivateKey) Generate(rand io.Reader) {
	if err := dsa.GenerateParameters(&priv.PrivateKey.PublicKey.Parameters, rand, dsa.L1024N160); err != nil {
		panic(err.Error())
	}
	if err := dsa.GenerateKey(&priv.PrivateKey, rand); err != nil {
		panic(err.Error())
	}
	priv.PublicKey.PublicKey = priv.PrivateKey.PublicKey
}

func notHex(r rune) bool {
	if r >= '0' && r <= '9' ||
		r >= 'a' && r <= 'f' ||
		r >= 'A' && r <= 'F' {
		return false
	}

	return true
}

// Import parses the contents of a libotr private key file.
func (priv *PrivateKey) Import(in []byte) bool {
	mpiStart := []byte(" #")

	mpis := make([]*big.Int, 5)

	for i := 0; i < len(mpis); i++ {
		start := bytes.Index(in, mpiStart)
		if start == -1 {
			return false
		}
		in = in[start+len(mpiStart):]
		end := bytes.IndexFunc(in, notHex)
		if end == -1 {
			return false
		}
		hexBytes := in[:end]
		in = in[end:]

		if len(hexBytes)&1 != 0 {
			return false
		}

		mpiBytes := make([]byte, len(hexBytes)/2)
		if _, err := hex.Decode(mpiBytes, hexBytes); err != nil {
			return false
		}

		mpis[i] = new(big.Int).SetBytes(mpiBytes)
	}

	priv.PrivateKey.P = mpis[0]
	priv.PrivateKey.Q = mpis[1]
	priv.PrivateKey.G = mpis[2]
	priv.PrivateKey.Y = mpis[3]
	priv.PrivateKey.X = mpis[4]
	priv.PublicKey.PublicKey = priv.PrivateKey.PublicKey

	a := new(big.Int).Exp(priv.PrivateKey.G, priv.PrivateKey.X, priv.PrivateKey.P)
	return a.Cmp(priv.PrivateKey.Y) == 0
}

func getU8(in []byte) (uint8, []byte, bool) {
	if len(in) < 1 {
		return 0, in, false
	}
	return in[0], in[1:], true
}

func getU16(in []byte) (uint16, []byte, bool) {
	if len(in) < 2 {
		return 0, in, false
	}
	r := uint16(in[0])<<8 | uint16(in[1])
	return r, in[2:], true
}

func getU32(in []byte) (uint32, []byte, bool) {
	if len(in) < 4 {
		return 0, in, false
	}
	r := uint32(in[0])<<24 | uint32(in[1])<<16 | uint32(in[2])<<8 | uint32(in[3])
	return r, in[4:], true
}

func getMPI(in []byte) (*big.Int, []byte, bool) {
	l, in, ok := getU32(in)
	if !ok || uint32(len(in)) < l {
		return nil, in, false
	}
	r := new(big.Int).SetBytes(in[:l])
	return r, in[l:], true
}

func getData(in []byte) ([]byte, []byte, bool) {
	l, in, ok := getU32(in)
	if !ok || uint32(len(in)) < l {
		return nil, in, false
	}
	return in[:l], in[l:], true
}

func getNBytes(in []byte, n int) ([]byte, []byte, bool) {
	if len(in) < n {
		return nil, in, false
	}
	return in[:n], in[n:], true
}

func appendU16(out []byte, v uint16) []byte {
	out = append(out, byte(v>>8), byte(v))
	return out
}

func appendU32(out []byte, v uint32) []byte {
	out = append(out, byte(v>>24), byte(v>>16), byte(v>>8), byte(v))
	return out
}

func appendData(out, v []byte) []byte {
	out = appendU32(out, uint32(len(v)))
	out = append(out, v...)
	return out
}

func appendMPI(out []byte, v *big.Int) []byte {
	vBytes := v.Bytes()
	out = appendU32(out, uint32(len(vBytes)))
	out = append(out, vBytes...)
	return out
}

func appendMPIs(out []byte, mpis ...*big.Int) []byte {
	for _, mpi := range mpis {
		out = appendMPI(out, mpi)
	}
	return out
}

func zero(b []byte) {
	for i := range b {
		b[i] = 0
	}
}