File: decode.go

package info (click to toggle)
golang-golang-x-arch 0.0~git20201207.1e68675-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 5,724 kB
  • sloc: ansic: 1,832; makefile: 42
file content (395 lines) | stat: -rw-r--r-- 9,785 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package main

import (
	"fmt"
	"log"
	"regexp"
	"strings"

	"golang.org/x/arch/x86/xeddata"
)

// encoding is decoded XED instruction pattern.
type encoding struct {
	// opbyte is opcode byte (one that follows [E]VEX prefix).
	// It's called "opcode" in Intel manual, but we use that for
	// instruction name (iclass in XED terms).
	opbyte string

	// opdigit is ModRM.Reg field used to encode opcode extension.
	// In Intel manual, "/digit" notation is used.
	opdigit string

	// vex represents [E]VEX fields that are used in a first [E]VEX
	// opBytes element (see prefixExpr function).
	vex struct {
		P string // 66/F2/F3
		L string // 128/256/512
		M string // 0F/0F38/0F3A
		W string // W0/W1
	}

	// evexScale is a scaling factor used to calculate compact disp-8.
	evexScale string

	// evexBcstScale is like evexScale, but used during broadcasting.
	// Empty for optab entries that do not have broadcasting support.
	evexBcstScale string

	// evex describes which features of EVEX can be used by optab entry.
	// All flags are "false" for VEX-encoded insts.
	evex struct {
		// There is no "broadcast" flag because it's inferred
		// from non-empty evexBcstScale.

		SAE      bool // EVEX.b controls SAE for reg-reg insts
		Rounding bool // EVEX.b + EVEX.RC (VL) control rounding for FP insts
		Zeroing  bool // Instruction can use zeroing.
	}
}

type decoder struct {
	ctx   *context
	insts []*instruction
}

// decodeGroups fills ctx.groups with decoded instruction groups.
//
// Reads XED objects from ctx.xedPath.
func decodeGroups(ctx *context) {
	d := decoder{ctx: ctx}
	groups := make(map[string][]*instruction)
	for _, inst := range d.DecodeAll() {
		groups[inst.opcode] = append(groups[inst.opcode], inst)
	}
	for op, insts := range groups {
		ctx.groups = append(ctx.groups, &instGroup{
			opcode: op,
			list:   insts,
		})
	}
}

// DecodeAll decodes every XED instruction.
func (d *decoder) DecodeAll() []*instruction {
	err := xeddata.WalkInsts(d.ctx.xedPath, func(inst *xeddata.Inst) {
		inst.Pattern = xeddata.ExpandStates(d.ctx.db, inst.Pattern)
		pset := xeddata.NewPatternSet(inst.Pattern)

		opcode := inst.Iclass

		switch {
		case inst.HasAttribute("AMDONLY") || inst.Extension == "XOP":
			return // Only VEX and EVEX are supported
		case !pset.Is("VEX") && !pset.Is("EVEX"):
			return // Skip non-AVX instructions
		case inst.RealOpcode == "N":
			return // Skip unstable instructions
		}

		// Expand some patterns to simplify decodePattern.
		pset.Replace("FIX_ROUND_LEN128()", "VL=0")
		pset.Replace("FIX_ROUND_LEN512()", "VL=2")

		mask, args := d.decodeArgs(pset, inst)
		d.insts = append(d.insts, &instruction{
			pset:   pset,
			opcode: opcode,
			mask:   mask,
			args:   args,
			enc:    d.decodePattern(pset, inst),
		})
	})
	if err != nil {
		log.Fatalf("walk insts: %v", err)
	}
	return d.insts
}

// registerArgs maps XED argument name RHS to its decoded version.
var registerArgs = map[string]argument{
	"GPR32_R()":  {"Yrl", "reg"},
	"GPR64_R()":  {"Yrl", "reg"},
	"VGPR32_R()": {"Yrl", "reg"},
	"VGPR64_R()": {"Yrl", "reg"},
	"VGPR32_N()": {"Yrl", "regV"},
	"VGPR64_N()": {"Yrl", "regV"},
	"GPR32_B()":  {"Yrl", "reg/mem"},
	"GPR64_B()":  {"Yrl", "reg/mem"},
	"VGPR32_B()": {"Yrl", "reg/mem"},
	"VGPR64_B()": {"Yrl", "reg/mem"},

	"XMM_R()":  {"Yxr", "reg"},
	"XMM_R3()": {"YxrEvex", "reg"},
	"XMM_N()":  {"Yxr", "regV"},
	"XMM_N3()": {"YxrEvex", "regV"},
	"XMM_B()":  {"Yxr", "reg/mem"},
	"XMM_B3()": {"YxrEvex", "reg/mem"},
	"XMM_SE()": {"Yxr", "regIH"},

	"YMM_R()":  {"Yyr", "reg"},
	"YMM_R3()": {"YyrEvex", "reg"},
	"YMM_N()":  {"Yyr", "regV"},
	"YMM_N3()": {"YyrEvex", "regV"},
	"YMM_B()":  {"Yyr", "reg/mem"},
	"YMM_B3()": {"YyrEvex", "reg/mem"},
	"YMM_SE()": {"Yyr", "regIH"},

	"ZMM_R3()": {"Yzr", "reg"},
	"ZMM_N3()": {"Yzr", "regV"},
	"ZMM_B3()": {"Yzr", "reg/mem"},

	"MASK_R()": {"Yk", "reg"},
	"MASK_N()": {"Yk", "regV"},
	"MASK_B()": {"Yk", "reg/mem"},

	"MASKNOT0()": {"Yknot0", "kmask"},

	// Handled specifically in "generate".
	"MASK1()": {"MASK1()", "MASK1()"},
}

func (d *decoder) decodeArgs(pset xeddata.PatternSet, inst *xeddata.Inst) (mask *argument, args []*argument) {
	for i, f := range strings.Fields(inst.Operands) {
		xarg, err := xeddata.NewOperand(d.ctx.db, f)
		if err != nil {
			log.Fatalf("%s: args[%d]: %v", inst, i, err)
		}

		switch {
		case xarg.Action == "":
			continue // Skip meta args like EMX_BROADCAST_1TO32_8
		case !xarg.IsVisible():
			continue
		}

		arg := &argument{}
		args = append(args, arg)

		switch xarg.NameLHS() {
		case "IMM0":
			if xarg.Width != "b" {
				log.Fatalf("%s: args[%d]: expected width=b, found %s", inst, i, xarg.Width)
			}
			if pset["IMM0SIGNED=1"] {
				arg.ytype = "Yi8"
			} else {
				arg.ytype = "Yu8"
			}
			arg.zkind = "imm8"

		case "REG0", "REG1", "REG2", "REG3":
			rhs := xarg.NameRHS()
			if rhs == "MASK1()" {
				mask = arg
			}
			*arg = registerArgs[rhs]
			if arg.ytype == "" {
				log.Fatalf("%s: args[%d]: unexpected %s reg", inst, i, rhs)
			}
			if xarg.Attributes["MULTISOURCE4"] {
				arg.ytype += "Multi4"
			}

		case "MEM0":
			arg.ytype = pset.MatchOrDefault("Ym",
				"VMODRM_XMM()", "Yxvm",
				"VMODRM_YMM()", "Yyvm",
				"UISA_VMODRM_XMM()", "YxvmEvex",
				"UISA_VMODRM_YMM()", "YyvmEvex",
				"UISA_VMODRM_ZMM()", "Yzvm",
			)
			arg.zkind = "reg/mem"

		default:
			log.Fatalf("%s: args[%d]: unexpected %s", inst, i, xarg.NameRHS())
		}
	}

	// Reverse args.
	for i := len(args)/2 - 1; i >= 0; i-- {
		j := len(args) - 1 - i
		args[i], args[j] = args[j], args[i]
	}

	return mask, args
}

func (d *decoder) decodePattern(pset xeddata.PatternSet, inst *xeddata.Inst) *encoding {
	var enc encoding

	enc.opdigit = d.findOpdigit(pset)
	enc.opbyte = d.findOpbyte(pset, inst)

	if strings.Contains(inst.Attributes, "DISP8_") {
		enc.evexScale = d.findEVEXScale(pset)
		enc.evexBcstScale = d.findEVEXBcstScale(pset, inst)
	}

	enc.vex.P = pset.Match(
		"VEX_PREFIX=1", "66",
		"VEX_PREFIX=2", "F2",
		"VEX_PREFIX=3", "F3")
	enc.vex.M = pset.Match(
		"MAP=1", "0F",
		"MAP=2", "0F38",
		"MAP=3", "0F3A")
	enc.vex.L = pset.MatchOrDefault("128",
		"VL=0", "128",
		"VL=1", "256",
		"VL=2", "512")
	enc.vex.W = pset.MatchOrDefault("W0",
		"REXW=0", "W0",
		"REXW=1", "W1")

	if pset.Is("EVEX") {
		enc.evex.SAE = strings.Contains(inst.Operands, "TXT=SAESTR")
		enc.evex.Rounding = strings.Contains(inst.Operands, "TXT=ROUNDC")
		enc.evex.Zeroing = strings.Contains(inst.Operands, "TXT=ZEROSTR")
	}

	// Prefix each non-empty part with vex or evex.
	parts := [...]*string{
		&enc.evexScale, &enc.evexBcstScale,
		&enc.vex.P, &enc.vex.M, &enc.vex.L, &enc.vex.W,
	}
	for _, p := range parts {
		if *p == "" {
			continue
		}
		if pset.Is("EVEX") {
			*p = "evex" + *p
		} else {
			*p = "vex" + *p
		}
	}

	return &enc
}

func (d *decoder) findOpdigit(pset xeddata.PatternSet) string {
	reg := pset.Index(
		"REG[0b000]",
		"REG[0b001]",
		"REG[0b010]",
		"REG[0b011]",
		"REG[0b100]",
		"REG[0b101]",
		"REG[0b110]",
		"REG[0b111]",
	)
	// Fixed ModRM.Reg field means that it is used for opcode extension.
	if reg != -1 {
		return fmt.Sprintf("0%d", reg)
	}
	return ""
}

// opbyteRE matches uint8 hex literal.
var opbyteRE = regexp.MustCompile(`0x[0-9A-F]{2}`)

func (d *decoder) findOpbyte(pset xeddata.PatternSet, inst *xeddata.Inst) string {
	opbyte := ""
	for k := range pset {
		if opbyteRE.MatchString(k) {
			if opbyte == "" {
				opbyte = k
			} else {
				log.Fatalf("%s: multiple opbytes", inst)
			}
		}
	}
	return opbyte
}

func (d *decoder) findEVEXScale(pset xeddata.PatternSet) string {
	switch {
	case pset["NELEM_FULL()"], pset["NELEM_FULLMEM()"]:
		return pset.Match(
			"VL=0", "N16",
			"VL=1", "N32",
			"VL=2", "N64")
	case pset["NELEM_MOVDDUP()"]:
		return pset.Match(
			"VL=0", "N8",
			"VL=1", "N32",
			"VL=2", "N64")
	case pset["NELEM_HALF()"], pset["NELEM_HALFMEM()"]:
		return pset.Match(
			"VL=0", "N8",
			"VL=1", "N16",
			"VL=2", "N32")
	case pset["NELEM_QUARTERMEM()"]:
		return pset.Match(
			"VL=0", "N4",
			"VL=1", "N8",
			"VL=2", "N16")
	case pset["NELEM_EIGHTHMEM()"]:
		return pset.Match(
			"VL=0", "N2",
			"VL=1", "N4",
			"VL=2", "N8")
	case pset["NELEM_TUPLE2()"]:
		return pset.Match(
			"ESIZE_32_BITS()", "N8",
			"ESIZE_64_BITS()", "N16")
	case pset["NELEM_TUPLE4()"]:
		return pset.Match(
			"ESIZE_32_BITS()", "N16",
			"ESIZE_64_BITS()", "N32")
	case pset["NELEM_TUPLE8()"]:
		return "N32"
	case pset["NELEM_MEM128()"], pset["NELEM_TUPLE1_4X()"]:
		return "N16"
	}

	// Explicit list is required to make it possible to
	// detect unhandled nonterminals for the caller.
	scalars := [...]string{
		"NELEM_SCALAR()",
		"NELEM_GSCAT()",
		"NELEM_GPR_READER()",
		"NELEM_GPR_READER_BYTE()",
		"NELEM_GPR_READER_WORD()",
		"NELEM_GPR_WRITER_STORE()",
		"NELEM_GPR_WRITER_STORE_BYTE()",
		"NELEM_GPR_WRITER_STORE_WORD()",
		"NELEM_GPR_WRITER_LDOP_D()",
		"NELEM_GPR_WRITER_LDOP_Q()",
		"NELEM_TUPLE1()",
		"NELEM_TUPLE1_BYTE()",
		"NELEM_TUPLE1_WORD()",
	}
	for _, scalar := range scalars {
		if pset[scalar] {
			return pset.Match(
				"ESIZE_8_BITS()", "N1",
				"ESIZE_16_BITS()", "N2",
				"ESIZE_32_BITS()", "N4",
				"ESIZE_64_BITS()", "N8")
		}
	}

	return ""
}

func (d *decoder) findEVEXBcstScale(pset xeddata.PatternSet, inst *xeddata.Inst) string {
	// Only FULL and HALF tuples are affected by the broadcasting.
	switch {
	case pset["NELEM_FULL()"]:
		return pset.Match(
			"ESIZE_32_BITS()", "BcstN4",
			"ESIZE_64_BITS()", "BcstN8")
	case pset["NELEM_HALF()"]:
		return "BcstN4"
	default:
		if inst.HasAttribute("BROADCAST_ENABLED") {
			log.Fatalf("%s: unexpected tuple for bcst", inst)
		}
		return ""
	}
}