1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
|
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Armmap constructs the ARM opcode map from the instruction set CSV file.
//
// Usage:
//
// armmap [-fmt=format] arm.csv
//
// The known output formats are:
//
// text (default) - print decoding tree in text form
// decoder - print decoding tables for the armasm package
package main
import (
"bufio"
"encoding/csv"
"flag"
"fmt"
"log"
"os"
"sort"
"strconv"
"strings"
)
var format = flag.String("fmt", "text", "output format: text, decoder")
var inputFile string
func usage() {
fmt.Fprintf(os.Stderr, "usage: armmap [-fmt=format] x86.csv\n")
os.Exit(2)
}
func main() {
log.SetFlags(0)
log.SetPrefix("armmap: ")
flag.Usage = usage
flag.Parse()
if flag.NArg() != 1 {
usage()
}
inputFile = flag.Arg(0)
var print func(*Prog)
switch *format {
default:
log.Fatalf("unknown output format %q", *format)
case "text":
print = printText
case "decoder":
print = printDecoder
}
p, err := readCSV(flag.Arg(0))
if err != nil {
log.Fatal(err)
}
print(p)
}
// readCSV reads the CSV file and returns the corresponding Prog.
// It may print details about problems to standard error using the log package.
func readCSV(file string) (*Prog, error) {
// Read input.
// Skip leading blank and # comment lines.
f, err := os.Open(file)
if err != nil {
return nil, err
}
b := bufio.NewReader(f)
for {
c, err := b.ReadByte()
if err != nil {
break
}
if c == '\n' {
continue
}
if c == '#' {
b.ReadBytes('\n')
continue
}
b.UnreadByte()
break
}
table, err := csv.NewReader(b).ReadAll()
if err != nil {
return nil, fmt.Errorf("parsing %s: %v", file, err)
}
if len(table) == 0 {
return nil, fmt.Errorf("empty csv input")
}
if len(table[0]) < 5 {
return nil, fmt.Errorf("csv too narrow: need at least five columns")
}
p := &Prog{}
for _, row := range table {
add(p, row[0], row[1], row[2], row[3], row[4])
}
return p, nil
}
type Prog struct {
Inst []Inst
OpRanges map[string]string
}
type Inst struct {
Text string
Encoding string
Mask uint32
Value uint32
Priority int
OpBase string
OpBits uint64
Args []string
}
type Arg struct {
Name string
Bits uint64
}
// add adds the entry from the CSV described by maskstr, valuestr, text, encoding, tags
// to the program p.
func add(p *Prog, maskstr, valuestr, text, encoding, tags string) {
if strings.Contains(tags, "pseudo") {
return
}
// For now, ignore the VFP floating point instructions.
if strings.HasPrefix(text, "V") && !strings.Contains(tags, "vfp") {
// TODO
return
}
mask, err := strconv.ParseUint(maskstr, 0, 32)
if err != nil {
log.Printf("invalid mask %q", maskstr)
return
}
value, err := strconv.ParseUint(valuestr, 0, 32)
if err != nil {
log.Printf("invalid value %q", valuestr)
return
}
// Parse encoding, building size and offset of each field.
// The first field in the encoding is the largest offset.
fuzzy := uint32(0) // mask of 'should be' bits
fieldOffset := map[string]int{}
fieldWidth := map[string]int{}
off := 32
for _, f := range strings.Split(encoding, "|") {
n := 1
if i := strings.Index(f, ":"); i >= 0 {
n, _ = strconv.Atoi(f[i+1:])
}
off -= n
fieldOffset[f] = off
fieldWidth[f] = n
if f == "(0)" || f == "(1)" {
fuzzy |= 1 << uint(off)
}
}
if off != 0 {
fmt.Fprintf(os.Stderr, "%s: counted %d bits in %s\n", text, 32-off, encoding)
}
// Track which encoding fields we found uses for.
// If we do not find a use for a field, that's an error in the input tables.
fieldUsed := map[string]bool{}
// Split text into opcode and arguments.
var op, argstr string
if i := strings.Index(text, " "); i >= 0 {
op = text[:i]
argstr = text[i:]
} else {
op = text
}
op = strings.TrimSpace(op)
argstr = strings.TrimSpace(argstr)
// Parse opcode suffixes.
i := strings.Index(op, "<")
if i < 0 {
i = len(op)
}
if j := strings.Index(op, "{"); j >= 0 && j < i {
i = j
}
op, suffix := op[:i], op[i:]
if suffix != "" && opSuffix[suffix] == "" {
fmt.Fprintf(os.Stderr, "%s: invalid op suffix %q in %s\n", text, suffix, op+suffix)
}
// Make sure fields needed by opcode suffix are available.
for _, f := range strings.Split(opSuffix[suffix], ",") {
if f != "" && fieldWidth[f] == 0 {
fmt.Fprintf(os.Stderr, "%s: opsuffix %s missing %s in encoding %s\n", text, suffix, f, encoding)
}
fieldUsed[f] = true
}
// Build list of opcodes that can be generated by this suffix.
// For example, the opcodes generated by ADD<c> are ADD.EQ, ADD.NE, etc.
// To simplify the decoding of instruction opcodes, we arrange that this
// sequence aligns with the encoding, so that decoding amounts to extracting
// the right bits, concatenating them, and adding them to the first opcode in
// the sequence. If the condition code is present, we always place it in the
// low order bits, so that x&^15 == FOO_EQ tests whether x is any of the
// conditional FOO instructions.
ops := []string{op}
opBits := uint64(0) // record of bits to extract and add to opcode base
opFields := strings.Split(opSuffix[suffix], ",")
// First the optional elements, like {S} meaning "" or ".S".
for strings.HasPrefix(suffix, "{") {
i := strings.Index(suffix, "}")
var f, option string
option, suffix = suffix[1:i], suffix[i+1:]
f, opFields = opFields[0], opFields[1:]
if option == "W" {
// The {W} option on PLD{W} uses the R bit which is !W.
ops = cross(ops, "."+option, "")
} else {
ops = cross(ops, "", "."+option)
}
if fieldWidth[f] != 1 {
fmt.Fprintf(os.Stderr, "%s: have %d bits for {%s}\n", text, fieldWidth[f], option)
}
// opBits is a sequence of 16-bit chunks describing contiguous bit sections.
// Each chunk is 8-bit offset followed by 8-bit size.
opBits = opBits<<16 | uint64(fieldOffset[f])<<8 | 1
}
// Then the true field substitutions.
haveCond := false
for strings.Contains(suffix, "<") {
var f, literal, x string
if len(opFields) == 0 {
fmt.Fprintf(os.Stderr, "%s: ran out of suffix fields for <%s>\n", text, x)
break
}
f, opFields = opFields[0], opFields[1:]
i := strings.Index(suffix, "<")
j := strings.Index(suffix, ">")
literal, x, suffix = suffix[:i], suffix[i+1:j], suffix[j+1:]
// Add leading literal text to all opcodes.
ops = cross(ops, literal)
// The <c> condition can happen anywhere in the opcode text
// but we want to generate the actual variation in the low bits
// of the list index. Remember when and where we've seen <c> and apply
// it after the loop has finished.
if x == "c" && f == "cond:4" {
haveCond = true
ops = cross(ops, "_COND_")
continue
}
// Otherwise, choices[x] lists the possible expansions of <x>.
// If <x> is of the form <A,B,C> the choices are A, B, and C.
expand := choices[x]
if expand == nil && strings.Contains(x, ",") {
expand = strings.Split(x, ",")
}
if expand == nil {
fmt.Fprintf(os.Stderr, "%s: unknown choices for <%s>\n", text, x)
expand = []string{x}
} else if len(expand) != 1<<uint(fieldWidth[f]) {
fmt.Fprintf(os.Stderr, "%s: have %d choices for <%s> but %d bits\n", text, len(expand), x, fieldWidth[f])
}
opBits = opBits<<16 | uint64(fieldOffset[f])<<8 | uint64(fieldWidth[f])
ops = cross(ops, expand...)
}
if haveCond {
// Apply condtional suffix last.
opBits = opBits<<16 | 28<<8 | 4
ops = crossCond(ops)
}
ops = cross(ops, suffix)
// Now ops is a list of opcodes generated by this opcode pattern.
// We want to make sure that we can arrange for those opcodes to
// happen consecutively in the final opcode numbering.
// Record in p.OpRanges[op] the required consecutive sequence of
// opcode that includes op. To make searches easier, we record
// the sequence as a comma-separated list of strings with commas
// on both ends: [A, B] encodes as ",A,B,".
if p.OpRanges == nil {
p.OpRanges = make(map[string]string)
}
opstr := "," + strings.Join(ops, ",") + ","
for _, op := range ops {
if old := p.OpRanges[op]; old != "" && old != opstr {
if strings.Contains(old, opstr) {
opstr = old
} else if strings.Contains(opstr, old) {
// great, do nothing
} else {
// It would also be okay if there is some subsequence s such that
// old = x+s and opstr = s+y (or vice versa), in which case we should
// record opstr = x+s+y. However, this has not come up in practice.
// Failing that, we can't satisfy the sequencing requirements.
fmt.Fprintf(os.Stderr, "%s: %s appears in both %s and %s\n", text, op, old, opstr)
}
}
}
for _, op := range strings.Split(opstr, ",") {
if op != "" {
p.OpRanges[op] = opstr
}
}
// Process the arguments, building a list of argument descriptions.
// Each argument description has the form <argument>|field@off|field@off...
// where the |field@off suffixes give the name and location of the fields
// needed by the argument. Each such string maps to a different decoding
// type in the generated table, according to the argOps map.
var args []string
for argstr != "" {
// Find longest match among argSuffixes pieces.
best := 0
for a := range argSuffixes {
if argstr == a || strings.HasPrefix(argstr, a+",") {
if best < len(a) {
best = len(a)
}
}
}
if best == 0 {
fmt.Fprintf(os.Stderr, "%s: unknown arg %s\n", text, argstr)
break
}
var arg, desc string
arg, argstr = argstr[:best], strings.TrimSpace(strings.TrimLeft(argstr[best:], ","))
desc = arg
for _, f := range strings.Split(argSuffixes[desc], ",") {
if f == "" {
continue
}
if fieldWidth[f] == 0 {
fmt.Fprintf(os.Stderr, "%s: arg %s missing %s in encoding %s\n", text, arg, f, encoding)
}
fieldUsed[f] = true
desc += fmt.Sprintf("|%s@%d", f, fieldOffset[f])
}
args = append(args, desc)
}
// Check that all encoding fields were used by suffix or argument decoding.
for f := range fieldWidth {
switch f {
case "0", "1", "(0)", "(1)":
// ok
default:
if !fieldUsed[f] {
fmt.Fprintf(os.Stderr, "%s: encoding field %s not used in %s\n", text, f, encoding)
}
}
}
// Determine decoding priority. Instructions that say 'SEE X' in the tag
// are considered lower priority than ones that don't. In theory the
// structure described by the SEE tags might be richer than that, but
// in practice it only has those two levels.
// We leave space for two more priorities according to whether the
// fuzzy bits are set correctly. The full set of priorities then is:
//
// 4 - no SEE tag, fuzzy bits all match
// 3 - no SEE tag, some fuzzy bits don't match
// 2 - SEE tag, fuzzy bits all match
// 1 - SEE tag, some fuzzy bits don't match
//
// You could argue for swapping the middle two levels but so far
// it has not been an issue.
pri := 4
if strings.Contains(tags, "SEE") {
pri = 2
}
inst := Inst{
Text: text,
Encoding: encoding,
Mask: uint32(mask),
Value: uint32(value),
Priority: pri,
OpBase: ops[0],
OpBits: opBits,
Args: args,
}
p.Inst = append(p.Inst, inst)
if fuzzy != 0 {
inst.Mask &^= fuzzy
inst.Priority--
p.Inst = append(p.Inst, inst)
}
}
// opSuffix describes the encoding fields used to resolve a given opcode suffix.
var opSuffix = map[string]string{
"<ADD,SUB>": "op",
"<BIF,BIT,BSL>": "op:2",
"<MLA,MLS><c>.F<32,64>": "op,cond:4,sz",
"<MLS,MLA><c>.F<32,64>": "op,cond:4,sz",
"<BT,TB><c>": "tb,cond:4",
"<TBL,TBX>.8": "op",
"<c>": "cond:4",
"<c>.32": "cond:4",
"<c>.F<32,64>": "cond:4,sz",
"<x><y><c>": "N,M,cond:4",
"<y><c>": "M,cond:4",
"{B}<c>": "B,cond:4",
"{E}<c>.F<32,64>": "E,cond:4,sz",
"{R}<c>": "R,cond:4",
"<c>.F<32,64>.<U,S>32": "cond:4,sz,op",
"<R,><c>.<U,S>32.F<32,64>": "op,cond:4,signed,sz",
"{S}<c>": "S,cond:4",
"{W}": "R",
"{X}<c>": "M,cond:4",
"<B,T><c>.<F32.F16,F16.F32>": "T,cond:4,op",
"<c>.<F64.F32,F32.F64>": "cond:4,sz",
"<c>.FX<S,U><16,32>.F<32,64>": "cond:4,U,sx,sz",
"<c>.F<32,64>.FX<S,U><16,32>": "cond:4,sz,U,sx",
}
// choices[x] describes the choices for filling in "<"+x+">" in an opcode suffix.
// Opcodes that end up containing ZZ take up a numeric sequence value but are
// not exported in the package API.
var choices = map[string][]string{
"c": {".EQ", ".NE", ".CS", ".CC", ".MI", ".PL", ".VS", ".VC", ".HI", ".LS", ".GE", ".LT", ".GT", ".LE", "", ".ZZ"},
"x": {"B", "T"},
"y": {"B", "T"},
}
// argOps maps from argument descriptions to internal decoder name.
var argOps = map[string]string{
// 4-bit register encodings
"<Rm>|Rm:4@0": "arg_R_0",
"<Rn>|Rn:4@0": "arg_R_0",
"<Rt>|Rt:4@0": "arg_R_0",
"<Rm>|Rm:4@8": "arg_R_8",
"<Ra>|Ra:4@12": "arg_R_12",
"<Rd>|Rd:4@12": "arg_R_12",
"<RdLo>|RdLo:4@12": "arg_R_12",
"<Rt>|Rt:4@12": "arg_R_12",
"<Rt_nzcv>|Rt:4@12": "arg_R_12_nzcv",
"<Rd>|Rd:4@16": "arg_R_16",
"<RdHi>|RdHi:4@16": "arg_R_16",
"<Rn>|Rn:4@16": "arg_R_16",
// first and second of consecutive register pair
"<Rt1>|Rt:4@0": "arg_R1_0",
"<Rt1>|Rt:4@12": "arg_R1_12",
"<Rt2>|Rt:4@0": "arg_R2_0",
"<Rt2>|Rt:4@12": "arg_R2_12",
// register arithmetic
"<Rm>,<type> <Rs>|Rm:4@0|Rs:4@8|type:2@5": "arg_R_shift_R",
"<Rm>{,<shift>}|Rm:4@0|imm5:5@7|type:2@5": "arg_R_shift_imm",
"<Rn>{,<shift>}|Rn:4@0|imm5:5@7|sh@6": "arg_R_shift_imm",
"<Rm>{,LSL #<imm5>}|Rm:4@0|imm5:5@7": "arg_R_shift_imm",
"<Rm>{,<rotation>}|Rm:4@0|rotate:2@10": "arg_R_rotate",
// memory references
"<Rn>{!}|Rn:4@16|W@21": "arg_R_16_WB",
"[<Rn>]|Rn:4@16": "arg_mem_R",
"[<Rn>,+/-<Rm>{, <shift>}]{!}|Rn:4@16|U@23|Rm:4@0|type:2@5|imm5:5@7|P@24|W@21": "arg_mem_R_pm_R_shift_imm_W",
"[<Rn>{,#+/-<imm8>}]{!}|Rn:4@16|P@24|U@23|W@21|imm4H:4@8|imm4L:4@0": "arg_mem_R_pm_imm8_W",
"[<Rn>] {,#+/-<imm8>}|Rn:4@16|U@23|imm4H:4@8|imm4L:4@0": "arg_mem_R_pm_imm8_postindex",
"[<Rn>{,#+/-<imm12>}]{!}|Rn:4@16|P@24|U@23|W@21|imm12:12@0": "arg_mem_R_pm_imm12_W",
"[<Rn>],#+/-<imm12>|Rn:4@16|imm12:12@0|U@23": "arg_mem_R_pm_imm12_postindex",
"[<Rn>,#+/-<imm12>]|Rn:4@16|U@23|imm12:12@0": "arg_mem_R_pm_imm12_offset",
"[<Rn>] {,#+/-<imm12>}|Rn:4@16|U@23|imm12:12@0": "arg_mem_R_pm_imm12_postindex",
"[<Rn>], +/-<Rm>|Rn:4@16|U@23|Rm:4@0": "arg_mem_R_pm_R_postindex",
"[<Rn>,+/-<Rm>]{!}|Rn:4@16|U@23|Rm:4@0|P@24|W@21": "arg_mem_R_pm_R_W",
"[<Rn>],+/-<Rm>{, <shift>}|Rn:4@16|Rm:4@0|imm5:5@7|type:2@5|U@23": "arg_mem_R_pm_R_shift_imm_postindex",
"[<Rn>,+/-<Rm>{, <shift>}]|Rn:4@16|U@23|Rm:4@0|type:2@5|imm5:5@7": "arg_mem_R_pm_R_shift_imm_offset",
"[<Rn>{,#+/-<imm8>}]|Rn:4@16|U@23|imm8:8@0": "arg_mem_R_pm_imm8at0_offset",
// pc-relative constants
"<label+12>|imm12:12@0": "arg_label_p_12",
"<label-12>|imm12:12@0": "arg_label_m_12",
"<label+/-12>|imm12:12@0|U@23": "arg_label_pm_12",
"<label+/-4+4>|imm4H:4@8|imm4L:4@0|U@23": "arg_label_pm_4_4",
// constants
"#<const>|imm12:12@0": "arg_const",
"#<imm5>|imm5:5@7": "arg_imm5",
"#<imm5_nz>|imm5:5@7": "arg_imm5_nz",
"#<imm5_32>|imm5:5@7": "arg_imm5_32",
"<label24>|imm24:24@0": "arg_label24",
"#<lsb>|lsb:5@7": "arg_imm5",
"#<width>|lsb:5@7|msb:5@16": "arg_lsb_width",
"#<imm12+4>|imm12:12@8|imm4:4@0": "arg_imm_12at8_4at0",
"#<imm12+4>|imm12:12@0|imm4:4@16": "arg_imm_4at16_12at0",
"<label24H>|imm24:24@0|H@24": "arg_label24H",
"#<option>|option:4@0": "arg_option",
"#<widthm1>|widthm1:5@16": "arg_widthm1",
"#<sat_imm4>|sat_imm:4@16": "arg_satimm4",
"#<sat_imm5>|sat_imm:5@16": "arg_satimm5",
"#<sat_imm4m1>|sat_imm:4@16": "arg_satimm4m1",
"#<sat_imm5m1>|sat_imm:5@16": "arg_satimm5m1",
"#<imm24>|imm24:24@0": "arg_imm24",
// special
"<registers>|register_list:16@0": "arg_registers",
"<registers2>|register_list:16@0": "arg_registers2",
"<registers1>|Rt:4@12": "arg_registers1",
"<endian_specifier>|E@9": "arg_endian",
"SP": "arg_SP",
"APSR": "arg_APSR",
"FPSCR": "arg_FPSCR",
// VFP floating point registers
"<Sd>|Vd:4@12|D@22": "arg_Sd",
"<Sd,Dd>|Vd:4@12|D@22|sz@8": "arg_Sd_Dd",
"<Dd,Sd>|Vd:4@12|D@22|sz@8": "arg_Dd_Sd",
"<Sn>|Vn:4@16|N@7": "arg_Sn",
"<Sn,Dn>|Vn:4@16|N@7|sz@8": "arg_Sn_Dn",
"<Sm>|Vm:4@0|M@5": "arg_Sm",
"<Sm,Dm>|Vm:4@0|M@5|sz@8": "arg_Sm_Dm",
"#0.0": "arg_fp_0",
"#<imm_vfp>|imm4H:4@16|imm4L:4@0|sz@8": "arg_imm_vfp",
"#<fbits>|sx@7|imm4:4@0|i@5": "arg_fbits",
"<Dn[x]>|N@7|Vn:4@16|opc1@21": "arg_Dn_half",
"<Dd[x]>|D@7|Vd:4@16|opc1@21": "arg_Dn_half",
}
// argSuffixes describes the encoding fields needed for a particular suffix.
// The set of keys in argSuffixes also drives the identification of suffix pieces.
// For example, <Rm> and <Rm>{, <type> <Rs>} are both keys in the map
// and matching is done 'longest first', so "<Rm>, <Rm>{, <type> <Rs>}" is
// parsed as just two arguments despite the extra ", ".
// The field order in the map values must match the order expected in
// the argument descriptions in argOps.
var argSuffixes = map[string]string{
"#0": "",
"#0.0": "",
"#<const>": "imm12:12",
"#<fbits>": "sx,imm4:4,i",
"#<imm12+4>": "imm12:12,imm4:4",
"#<imm24>": "imm24:24",
"#<imm3>": "imm3:3",
"#<imm4>": "imm4:4",
"#<imm5>": "imm5:5",
"#<imm5_nz>": "imm5:5",
"#<imm5_32>": "imm5:5",
"#<imm6>": "imm6:6",
"#<immsize>": "size:2",
"#<imm_vfp>": "imm4H:4,imm4L:4,sz",
"#<sat_imm4>": "sat_imm:4",
"#<sat_imm5>": "sat_imm:5",
"#<sat_imm4m1>": "sat_imm:4",
"#<sat_imm5m1>": "sat_imm:5",
"#<lsb>": "lsb:5",
"#<option>": "option:4",
"#<width>": "lsb:5,msb:5",
"#<widthm1>": "widthm1:5",
"+/-<Rm>": "Rm:4,U",
"<Dd>": "D,Vd:4",
"<Dd[x]>": "D,Vd:4,opc1",
"<Dm>": "M,Vm:4",
"<Dm[x]>": "M,Vm:4,size:2",
"<Dn>": "N,Vn:4",
"<Dn[x]>": "N,Vn:4,opc1",
"<Dm[size_x]>": "imm4:4",
"<Qd>": "D,Vd:4",
"<Qm>": "M,Vm:4",
"<Qn>": "N,Vn:4",
"<Ra>": "Ra:4",
"<Rd>": "Rd:4",
"<RdHi>": "RdHi:4",
"<RdLo>": "RdLo:4",
"<Rm>": "Rm:4",
"<Rm>{,<rotation>}": "Rm:4,rotate:2",
"<Rm>{,<shift>}": "Rm:4,imm5:5,type:2",
"<Rm>{,LSL #<imm5>}": "Rm:4,imm5:5",
"<Rn>": "Rn:4",
"<Rn>{!}": "Rn:4,W",
"<Rn>{,<shift>}": "Rn:4,imm5:5,sh",
"<Rs>": "Rs:4",
"<Rt1>": "Rt:4",
"<Rt2>": "Rt:4",
"<Rt>": "Rt:4",
"<Rt_nzcv>": "Rt:4",
"<Sd>": "Vd:4,D",
"<Sm1>": "Vm:4,M",
"<Sm>": "Vm:4,M",
"<Sn>": "Vn:4,N",
"<Sd,Dd>": "Vd:4,D,sz",
"<Dd,Sd>": "Vd:4,D,sz",
"<Sn,Dn>": "Vn:4,N,sz",
"<Sm,Dm>": "Vm:4,M,sz",
"<endian_specifier>": "E",
"<label+/-12>": "imm12:12,U",
"<label+12>": "imm12:12",
"<label-12>": "imm12:12",
"<label24>": "imm24:24",
"<label24H>": "imm24:24,H",
"<label+/-4+4>": "imm4H:4,imm4L:4,U",
"<list4>": "D,Vd:4,type:4",
"<list3>": "D,Vd:4,index_align:4",
"<list3t>": "D,Vd:4,T",
"<list1>": "D,Vd:4",
"<list_len>": "N,Vn:4,len:2",
"<vlist32>": "D,Vd:4,imm8:8",
"<vlist64>": "D,Vd:4,imm8:8",
"<registers>": "register_list:16",
"<registers2>": "register_list:16",
"<registers1>": "Rt:4",
"APSR": "",
"<Rm>,<type> <Rs>": "Rm:4,Rs:4,type:2",
"FPSCR": "",
"SP": "",
"[<Rn>,#+/-<imm12>]": "Rn:4,U,imm12:12",
"[<Rn>,+/-<Rm>]{!}": "Rn:4,U,Rm:4,P,W",
"[<Rn>,+/-<Rm>{, <shift>}]": "Rn:4,U,Rm:4,type:2,imm5:5",
"[<Rn>,+/-<Rm>{, <shift>}]{!}": "Rn:4,U,Rm:4,type:2,imm5:5,P,W",
"[<Rn>] {,#+/-<imm12>}": "Rn:4,U,imm12:12",
"[<Rn>] {,#+/-<imm8>}": "Rn:4,U,imm4H:4,imm4L:4",
"[<Rn>]": "Rn:4",
"[<Rn>],#+/-<imm12>": "Rn:4,imm12:12,U",
"[<Rn>],+/-<Rm>{, <shift>}": "Rn:4,Rm:4,imm5:5,type:2,U",
"[<Rn>]{!}": "Rn:4,Rm:4",
"[<Rn>{@<align>}]{!}": "XXX",
"[<Rn>{,#+/-<imm12>}]{!}": "Rn:4,P,U,W,imm12:12",
"[<Rn>{,#+/-<imm8>}]{!}": "Rn:4,P,U,W,imm4H:4,imm4L:4",
"[<Rn>{,#+/-<imm8>}]": "Rn:4,U,imm8:8",
"[<Rn>], +/-<Rm>": "Rn:4,U,Rm:4",
"#<imm_simd1>": "i,imm3:3,imm4:4,cmode:4",
"#<imm_simd>": "op,i,imm3:3,imm4:4,cmode:4",
"#<imm_vs>": "L,imm6:6",
"#<imm_vsn>": "imm6:6",
}
// cross returns the string concatenation cross product of xs and ys.
func cross(xs []string, ys ...string) []string {
var xys []string
for _, x := range xs {
for _, y := range ys {
xys = append(xys, x+y)
}
}
return xys
}
// crossCond returns the cross product of xs with all the possible
// conditional execution suffixes. It is assumed that each string x in xs
// contains a substring _COND_ marking where the conditional suffix
// should be placed.
func crossCond(xs []string) []string {
ys := choices["c"]
var xys []string
for _, x := range xs {
i := strings.Index(x, "_COND_")
pre, post := x[:i], x[i+6:]
for _, y := range ys {
xys = append(xys, pre+y+post)
}
}
return xys
}
// printText implements the -fmt=text mode, which is not implemented (yet?).
func printText(p *Prog) {
log.Fatal("-fmt=text not implemented")
}
// printDecoder implements the -fmt=decoder mode.
// It emits the tables.go for package armasm's decoder.
func printDecoder(p *Prog) {
fmt.Printf("package armasm\n\n")
// Build list of opcodes sorted by name
// but preserving the sequential ranges needed for opcode decoding.
haveRange := make(map[string]string)
for _, r := range p.OpRanges {
haveRange[r] = r
}
var ranges []string
for _, r := range haveRange {
ranges = append(ranges, r)
}
sort.Strings(ranges)
// Emit const definitions for opcodes.
fmt.Printf("const (\n")
iota := 0
fmt.Printf("\t_ Op = iota\n")
iota++
for _, r := range ranges {
for _, op := range strings.Split(r, ",") {
if op == "" {
continue
}
// Assume if opcode says .EQ it is the start of a 16-wide
// iteration through the conditional suffixes. If so, emit
// blank names until the assigned value is 16-aligned.
if strings.Contains(op, ".EQ") {
for iota&15 != 0 {
fmt.Printf("\t_\n")
iota++
}
}
fmt.Printf("\t%s\n", strings.Replace(op, ".", "_", -1))
iota++
}
}
fmt.Printf(")\n")
// Emit slice mapping opcode number to name string.
fmt.Printf("\nvar opstr = [...]string{\n")
for _, r := range ranges {
for _, op := range strings.Split(r, ",") {
if op == "" {
continue
}
fmt.Printf("\t%s: %q,\n", strings.Replace(op, ".", "_", -1), op)
}
}
fmt.Printf("}\n")
// Emit decoding table.
unknown := map[string]bool{}
fmt.Printf("\nvar instFormats = [...]instFormat{\n")
for _, inst := range p.Inst {
fmt.Printf("\t{%#08x, %#08x, %d, %s, %#x, instArgs{", inst.Mask, inst.Value, inst.Priority, strings.Replace(inst.OpBase, ".", "_", -1), inst.OpBits)
for i, a := range inst.Args {
if i > 0 {
fmt.Printf(", ")
}
str := argOps[a]
if str == "" && !unknown[a] {
fmt.Fprintf(os.Stderr, "%s: unknown arg %s\n", inst.Text, a)
unknown[a] = true
}
fmt.Printf("%s", str)
}
fmt.Printf("}}, // %s %s\n", inst.Text, inst.Encoding)
}
fmt.Printf("}\n")
}
|