File: decode.go

package info (click to toggle)
golang-golang-x-arch 0.13.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,932 kB
  • sloc: ansic: 1,975; makefile: 59
file content (269 lines) | stat: -rw-r--r-- 5,722 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package loong64asm

import (
	"encoding/binary"
	"fmt"
)

type instArgs [5]instArg

// An instFormat describes the format of an instruction encoding.
type instFormat struct {
	mask  uint32
	value uint32
	op    Op
	// args describe how to decode the instruction arguments.
	// args is stored as a fixed-size array.
	// if there are fewer than len(args) arguments, args[i] == 0 marks
	// the end of the argument list.
	args instArgs
}

var (
	errShort   = fmt.Errorf("truncated instruction")
	errUnknown = fmt.Errorf("unknown instruction")
)

var decoderCover []bool

func init() {
	decoderCover = make([]bool, len(instFormats))
}

// Decode decodes the 4 bytes in src as a single instruction.
func Decode(src []byte) (inst Inst, err error) {
	if len(src) < 4 {
		return Inst{}, errShort
	}

	x := binary.LittleEndian.Uint32(src)

Search:
	for i := range instFormats {
		f := &instFormats[i]

		if (x & f.mask) != f.value {
			continue
		}

		// Decode args.
		var args Args
		for j, aop := range f.args {
			if aop == 0 {
				break
			}

			arg := decodeArg(aop, x, i)
			if arg == nil {
				// Cannot decode argument
				continue Search
			}

			args[j] = arg
		}

		decoderCover[i] = true
		inst = Inst{
			Op:   f.op,
			Args: args,
			Enc:  x,
		}
		return inst, nil
	}

	return Inst{}, errUnknown
}

// decodeArg decodes the arg described by aop from the instruction bits x.
// It returns nil if x cannot be decoded according to aop.
func decodeArg(aop instArg, x uint32, index int) Arg {
	switch aop {
	case arg_fd:
		return F0 + Reg(x&((1<<5)-1))

	case arg_fj:
		return F0 + Reg((x>>5)&((1<<5)-1))

	case arg_fk:
		return F0 + Reg((x>>10)&((1<<5)-1))

	case arg_fa:
		return F0 + Reg((x>>15)&((1<<5)-1))

	case arg_rd:
		return R0 + Reg(x&((1<<5)-1))

	case arg_rj:
		return R0 + Reg((x>>5)&((1<<5)-1))

	case arg_rk:
		return R0 + Reg((x>>10)&((1<<5)-1))

	case arg_fcsr_4_0:
		return FCSR0 + Fcsr(x&((1<<5)-1))

	case arg_fcsr_9_5:
		return FCSR0 + Fcsr((x>>5)&((1<<5)-1))

	case arg_cd:
		return FCC0 + Fcc(x&((1<<3)-1))

	case arg_cj:
		return FCC0 + Fcc((x>>5)&((1<<3)-1))

	case arg_ca:
		return FCC0 + Fcc((x>>15)&((1<<3)-1))

	case arg_op_4_0:
		tmp := x & ((1 << 5) - 1)
		return Uimm{tmp, false}

	case arg_csr_23_10:
		tmp := (x >> 10) & ((1 << 14) - 1)
		return Uimm{tmp, false}

	case arg_sa2_16_15:
		f := &instFormats[index]
		tmp := SaSimm((x >> 15) & ((1 << 2) - 1))
		if (f.op == ALSL_D) || (f.op == ALSL_W) || (f.op == ALSL_WU) {
			return tmp + 1
		} else {
			return tmp + 0
		}

	case arg_sa3_17_15:
		return SaSimm((x >> 15) & ((1 << 3) - 1))

	case arg_code_4_0:
		return CodeSimm(x & ((1 << 5) - 1))

	case arg_code_14_0:
		return CodeSimm(x & ((1 << 15) - 1))

	case arg_ui5_14_10:
		tmp := (x >> 10) & ((1 << 5) - 1)
		return Uimm{tmp, false}

	case arg_ui6_15_10:
		tmp := (x >> 10) & ((1 << 6) - 1)
		return Uimm{tmp, false}

	case arg_ui12_21_10:
		tmp := ((x >> 10) & ((1 << 12) - 1) & 0xfff)
		return Uimm{tmp, false}

	case arg_lsbw:
		tmp := (x >> 10) & ((1 << 5) - 1)
		return Uimm{tmp, false}

	case arg_msbw:
		tmp := (x >> 16) & ((1 << 5) - 1)
		return Uimm{tmp, false}

	case arg_lsbd:
		tmp := (x >> 10) & ((1 << 6) - 1)
		return Uimm{tmp, false}

	case arg_msbd:
		tmp := (x >> 16) & ((1 << 6) - 1)
		return Uimm{tmp, false}

	case arg_hint_4_0:
		tmp := x & ((1 << 5) - 1)
		return Uimm{tmp, false}

	case arg_hint_14_0:
		tmp := x & ((1 << 15) - 1)
		return Uimm{tmp, false}

	case arg_level_14_0:
		tmp := x & ((1 << 15) - 1)
		return Uimm{tmp, false}

	case arg_level_17_10:
		tmp := (x >> 10) & ((1 << 8) - 1)
		return Uimm{tmp, false}

	case arg_seq_17_10:
		tmp := (x >> 10) & ((1 << 8) - 1)
		return Uimm{tmp, false}

	case arg_si12_21_10:
		var tmp int16

		// no int12, so sign-extend a 12-bit signed to 16-bit signed
		if (x & 0x200000) == 0x200000 {
			tmp = int16(((x >> 10) & ((1 << 12) - 1)) | 0xf000)
		} else {
			tmp = int16(((x >> 10) & ((1 << 12) - 1)) | 0x0000)
		}
		return Simm16{tmp, 12}

	case arg_si14_23_10:
		var tmp int32
		if (x & 0x800000) == 0x800000 {
			tmp = int32((((x >> 10) & ((1 << 14) - 1)) << 2) | 0xffff0000)
		} else {
			tmp = int32((((x >> 10) & ((1 << 14) - 1)) << 2) | 0x00000000)
		}
		return Simm32{tmp, 14}

	case arg_si16_25_10:
		var tmp int32

		if (x & 0x2000000) == 0x2000000 {
			tmp = int32(((x >> 10) & ((1 << 16) - 1)) | 0xffff0000)
		} else {
			tmp = int32(((x >> 10) & ((1 << 16) - 1)) | 0x00000000)
		}

		return Simm32{tmp, 16}

	case arg_si20_24_5:
		var tmp int32
		if (x & 0x1000000) == 0x1000000 {
			tmp = int32(((x >> 5) & ((1 << 20) - 1)) | 0xfff00000)
		} else {
			tmp = int32(((x >> 5) & ((1 << 20) - 1)) | 0x00000000)
		}
		return Simm32{tmp, 20}

	case arg_offset_20_0:
		var tmp int32

		if (x & 0x10) == 0x10 {
			tmp = int32(((((x << 16) | ((x >> 10) & ((1 << 16) - 1))) & ((1 << 21) - 1)) << 2) | 0xff800000)
		} else {
			tmp = int32((((x << 16) | ((x >> 10) & ((1 << 16) - 1))) & ((1 << 21) - 1)) << 2)
		}

		return OffsetSimm{tmp, 21}

	case arg_offset_15_0:
		var tmp int32
		if (x & 0x2000000) == 0x2000000 {
			tmp = int32((((x >> 10) & ((1 << 16) - 1)) << 2) | 0xfffc0000)
		} else {
			tmp = int32((((x >> 10) & ((1 << 16) - 1)) << 2) | 0x00000000)
		}

		return OffsetSimm{tmp, 16}

	case arg_offset_25_0:
		var tmp int32

		if (x & 0x200) == 0x200 {
			tmp = int32(((((x << 16) | ((x >> 10) & ((1 << 16) - 1))) & ((1 << 26) - 1)) << 2) | 0xf0000000)
		} else {
			tmp = int32(((((x << 16) | ((x >> 10) & ((1 << 16) - 1))) & ((1 << 26) - 1)) << 2) | 0x00000000)
		}

		return OffsetSimm{tmp, 26}
	default:
		return nil
	}
}