File: decode.go

package info (click to toggle)
golang-golang-x-arch 0.13.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,932 kB
  • sloc: ansic: 1,975; makefile: 59
file content (550 lines) | stat: -rw-r--r-- 11,641 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package riscv64asm

import (
	"encoding/binary"
	"errors"
)

type argTypeList [6]argType

// An instFormat describes the format of an instruction encoding.
type instFormat struct {
	mask  uint32
	value uint32
	op    Op
	// args describe how to decode the instruction arguments.
	// args is stored as a fixed-size array.
	// if there are fewer than len(args) arguments, args[i] == 0 marks
	// the end of the argument list.
	args argTypeList
}

var (
	errShort   = errors.New("truncated instruction")
	errUnknown = errors.New("unknown instruction")
)

var decoderCover []bool

func init() {
	decoderCover = make([]bool, len(instFormats))
}

// Decode decodes the 4 bytes in src as a single instruction.
func Decode(src []byte) (Inst, error) {
	length := len(src)
	if length < 2 {
		return Inst{}, errShort
	}

	var x uint32
	// Non-RVC instructions always starts with 0x11
	// So check whether src[0] & 3 == 3
	if src[0]&3 == 3 {
		if length < 4 {
			return Inst{}, errShort
		}
		length = 4
		x = binary.LittleEndian.Uint32(src)
	} else {
		length = 2
		x = uint32(binary.LittleEndian.Uint16(src))
	}

Search:
	for i, f := range instFormats {
		if (x & f.mask) != f.value {
			continue
		}

		// Decode args.
		var args Args
		for j, aop := range f.args {
			if aop == 0 {
				break
			}
			arg := decodeArg(aop, x, i)
			if arg == nil && f.op != C_NOP {
				// Cannot decode argument.
				continue Search
			}
			args[j] = arg
		}

		if length == 2 {
			args = convertCompressedIns(&f, args)
		}

		decoderCover[i] = true
		inst := Inst{
			Op:   f.op,
			Args: args,
			Enc:  x,
			Len:  length,
		}
		return inst, nil
	}
	return Inst{}, errUnknown
}

// decodeArg decodes the arg described by aop from the instruction bits x.
// It returns nil if x cannot be decoded according to aop.
func decodeArg(aop argType, x uint32, index int) Arg {
	switch aop {
	case arg_rd:
		return X0 + Reg((x>>7)&((1<<5)-1))

	case arg_rs1:
		return X0 + Reg((x>>15)&((1<<5)-1))

	case arg_rs2:
		return X0 + Reg((x>>20)&((1<<5)-1))

	case arg_rs3:
		return X0 + Reg((x>>27)&((1<<5)-1))

	case arg_fd:
		return F0 + Reg((x>>7)&((1<<5)-1))

	case arg_fs1:
		return F0 + Reg((x>>15)&((1<<5)-1))

	case arg_fs2:
		return F0 + Reg((x>>20)&((1<<5)-1))

	case arg_fs3:
		return F0 + Reg((x>>27)&((1<<5)-1))

	case arg_rs1_amo:
		return AmoReg{X0 + Reg((x>>15)&((1<<5)-1))}

	case arg_rs1_mem:
		imm := x >> 20
		// Sign-extend
		if imm>>uint32(12-1) == 1 {
			imm |= 0xfffff << 12
		}
		return RegOffset{X0 + Reg((x>>15)&((1<<5)-1)), Simm{int32(imm), true, 12}}

	case arg_rs1_store:
		imm := (x<<20)>>27 | (x>>25)<<5
		// Sign-extend
		if imm>>uint32(12-1) == 1 {
			imm |= 0xfffff << 12
		}
		return RegOffset{X0 + Reg((x>>15)&((1<<5)-1)), Simm{int32(imm), true, 12}}

	case arg_pred:
		imm := x << 4 >> 28
		return MemOrder(uint8(imm))

	case arg_succ:
		imm := x << 8 >> 28
		return MemOrder(uint8(imm))

	case arg_csr:
		imm := x >> 20
		return CSR(imm)

	case arg_zimm:
		imm := x << 12 >> 27
		return Uimm{imm, true}

	case arg_shamt5:
		imm := x << 7 >> 27
		return Uimm{imm, false}

	case arg_shamt6:
		imm := x << 6 >> 26
		return Uimm{imm, false}

	case arg_imm12:
		imm := x >> 20
		// Sign-extend
		if imm>>uint32(12-1) == 1 {
			imm |= 0xfffff << 12
		}
		return Simm{int32(imm), true, 12}

	case arg_imm20:
		imm := x >> 12
		return Uimm{imm, false}

	case arg_jimm20:
		imm := (x>>31)<<20 | (x<<1)>>22<<1 | (x<<11)>>31<<11 | (x<<12)>>24<<12
		// Sign-extend
		if imm>>uint32(21-1) == 1 {
			imm |= 0x7ff << 21
		}
		return Simm{int32(imm), true, 21}

	case arg_simm12:
		imm := (x<<20)>>27 | (x>>25)<<5
		// Sign-extend
		if imm>>uint32(12-1) == 1 {
			imm |= 0xfffff << 12
		}
		return Simm{int32(imm), true, 12}

	case arg_bimm12:
		imm := (x<<20)>>28<<1 | (x<<1)>>26<<5 | (x<<24)>>31<<11 | (x>>31)<<12
		// Sign-extend
		if imm>>uint32(13-1) == 1 {
			imm |= 0x7ffff << 13
		}
		return Simm{int32(imm), true, 13}

	case arg_rd_p, arg_rs2_p:
		return X8 + Reg((x>>2)&((1<<3)-1))

	case arg_fd_p, arg_fs2_p:
		return F8 + Reg((x>>2)&((1<<3)-1))

	case arg_rs1_p, arg_rd_rs1_p:
		return X8 + Reg((x>>7)&((1<<3)-1))

	case arg_rd_n0, arg_rs1_n0, arg_rd_rs1_n0, arg_c_rs1_n0:
		if X0+Reg((x>>7)&((1<<5)-1)) == X0 {
			return nil
		}
		return X0 + Reg((x>>7)&((1<<5)-1))

	case arg_c_rs2_n0:
		if X0+Reg((x>>2)&((1<<5)-1)) == X0 {
			return nil
		}
		return X0 + Reg((x>>2)&((1<<5)-1))

	case arg_c_fs2:
		return F0 + Reg((x>>2)&((1<<5)-1))

	case arg_c_rs2:
		return X0 + Reg((x>>2)&((1<<5)-1))

	case arg_rd_n2:
		if X0+Reg((x>>7)&((1<<5)-1)) == X0 || X0+Reg((x>>7)&((1<<5)-1)) == X2 {
			return nil
		}
		return X0 + Reg((x>>7)&((1<<5)-1))

	case arg_c_imm6:
		imm := (x<<25)>>27 | (x<<19)>>31<<5
		// Sign-extend
		if imm>>uint32(6-1) == 1 {
			imm |= 0x3ffffff << 6
		}
		return Simm{int32(imm), true, 6}

	case arg_c_nzimm6:
		imm := (x<<25)>>27 | (x<<19)>>31<<5
		// Sign-extend
		if imm>>uint32(6-1) == 1 {
			imm |= 0x3ffffff << 6
		}
		if int32(imm) == 0 {
			return nil
		}
		return Simm{int32(imm), true, 6}

	case arg_c_nzuimm6:
		imm := (x<<25)>>27 | (x<<19)>>31<<5
		if int32(imm) == 0 {
			return nil
		}
		return Uimm{imm, false}

	case arg_c_uimm7:
		imm := (x<<26)>>31<<6 | (x<<25)>>31<<2 | (x<<19)>>29<<3
		return Uimm{imm, false}

	case arg_c_uimm8:
		imm := (x<<25)>>30<<6 | (x<<19)>>29<<3
		return Uimm{imm, false}

	case arg_c_uimm8sp_s:
		imm := (x<<23)>>30<<6 | (x<<19)>>28<<2
		return Uimm{imm, false}

	case arg_c_uimm8sp:
		imm := (x<<25)>>29<<2 | (x<<19)>>31<<5 | (x<<28)>>30<<6
		return Uimm{imm, false}

	case arg_c_uimm9sp_s:
		imm := (x<<22)>>29<<6 | (x<<19)>>29<<3
		return Uimm{imm, false}

	case arg_c_uimm9sp:
		imm := (x<<25)>>30<<3 | (x<<19)>>31<<5 | (x<<27)>>29<<6
		return Uimm{imm, false}

	case arg_c_bimm9:
		imm := (x<<29)>>31<<5 | (x<<27)>>30<<1 | (x<<25)>>30<<6 | (x<<19)>>31<<8 | (x<<20)>>30<<3
		// Sign-extend
		if imm>>uint32(9-1) == 1 {
			imm |= 0x7fffff << 9
		}
		return Simm{int32(imm), true, 9}

	case arg_c_nzimm10:
		imm := (x<<29)>>31<<5 | (x<<27)>>30<<7 | (x<<26)>>31<<6 | (x<<25)>>31<<4 | (x<<19)>>31<<9
		// Sign-extend
		if imm>>uint32(10-1) == 1 {
			imm |= 0x3fffff << 10
		}
		if int32(imm) == 0 {
			return nil
		}
		return Simm{int32(imm), true, 10}

	case arg_c_nzuimm10:
		imm := (x<<26)>>31<<3 | (x<<25)>>31<<2 | (x<<21)>>28<<6 | (x<<19)>>30<<4
		if int32(imm) == 0 {
			return nil
		}
		return Uimm{imm, false}

	case arg_c_imm12:
		imm := (x<<29)>>31<<5 | (x<<26)>>28<<1 | (x<<25)>>31<<7 | (x<<24)>>31<<6 | (x<<23)>>31<<10 | (x<<21)>>30<<8 | (x<<20)>>31<<4 | (x<<19)>>31<<11
		// Sign-extend
		if imm>>uint32(12-1) == 1 {
			imm |= 0xfffff << 12
		}
		return Simm{int32(imm), true, 12}

	case arg_c_nzimm18:
		imm := (x<<25)>>27<<12 | (x<<19)>>31<<17
		// Sign-extend
		if imm>>uint32(18-1) == 1 {
			imm |= 0x3fff << 18
		}
		if int32(imm) == 0 {
			return nil
		}
		return Simm{int32(imm), true, 18}

	default:
		return nil
	}
}

// convertCompressedIns rewrites the RVC Instruction to regular Instructions
func convertCompressedIns(f *instFormat, args Args) Args {
	var newargs Args
	switch f.op {
	case C_ADDI4SPN:
		f.op = ADDI
		newargs[0] = args[0]
		newargs[1] = Reg(X2)
		newargs[2] = Simm{int32(args[1].(Uimm).Imm), true, 12}

	case C_LW:
		f.op = LW
		newargs[0] = args[0]
		newargs[1] = RegOffset{args[1].(Reg), Simm{int32(args[2].(Uimm).Imm), true, 12}}

	case C_SW:
		f.op = SW
		newargs[0] = args[1]
		newargs[1] = RegOffset{args[0].(Reg), Simm{int32(args[2].(Uimm).Imm), true, 12}}

	case C_NOP:
		f.op = ADDI
		newargs[0] = X0
		newargs[1] = X0
		newargs[2] = Simm{0, true, 12}

	case C_ADDI:
		f.op = ADDI
		newargs[0] = args[0]
		newargs[1] = args[0]
		newargs[2] = Simm{args[1].(Simm).Imm, true, 12}

	case C_LI:
		f.op = ADDI
		newargs[0] = args[0]
		newargs[1] = Reg(X0)
		newargs[2] = Simm{args[1].(Simm).Imm, true, 12}

	case C_ADDI16SP:
		f.op = ADDI
		newargs[0] = Reg(X2)
		newargs[1] = Reg(X2)
		newargs[2] = Simm{args[0].(Simm).Imm, true, 12}

	case C_LUI:
		f.op = LUI
		newargs[0] = args[0]
		newargs[1] = Uimm{uint32(args[1].(Simm).Imm >> 12), false}

	case C_ANDI:
		f.op = ANDI
		newargs[0] = args[0]
		newargs[1] = args[0]
		newargs[2] = Simm{args[1].(Simm).Imm, true, 12}

	case C_SUB:
		f.op = SUB
		newargs[0] = args[0]
		newargs[1] = args[0]
		newargs[2] = args[1]

	case C_XOR:
		f.op = XOR
		newargs[0] = args[0]
		newargs[1] = args[0]
		newargs[2] = args[1]

	case C_OR:
		f.op = OR
		newargs[0] = args[0]
		newargs[1] = args[0]
		newargs[2] = args[1]

	case C_AND:
		f.op = AND
		newargs[0] = args[0]
		newargs[1] = args[0]
		newargs[2] = args[1]

	case C_J:
		f.op = JAL
		newargs[0] = Reg(X0)
		newargs[1] = Simm{args[0].(Simm).Imm, true, 21}

	case C_BEQZ:
		f.op = BEQ
		newargs[0] = args[0]
		newargs[1] = Reg(X0)
		newargs[2] = Simm{args[1].(Simm).Imm, true, 13}

	case C_BNEZ:
		f.op = BNE
		newargs[0] = args[0]
		newargs[1] = Reg(X0)
		newargs[2] = Simm{args[1].(Simm).Imm, true, 13}

	case C_LWSP:
		f.op = LW
		newargs[0] = args[0]
		newargs[1] = RegOffset{Reg(X2), Simm{int32(args[1].(Uimm).Imm), true, 12}}

	case C_JR:
		f.op = JALR
		newargs[0] = Reg(X0)
		newargs[1] = RegOffset{args[0].(Reg), Simm{0, true, 12}}

	case C_MV:
		f.op = ADD
		newargs[0] = args[0]
		newargs[1] = Reg(X0)
		newargs[2] = args[1]

	case C_EBREAK:
		f.op = EBREAK

	case C_JALR:
		f.op = JALR
		newargs[0] = Reg(X1)
		newargs[1] = RegOffset{args[0].(Reg), Simm{0, true, 12}}

	case C_ADD:
		f.op = ADD
		newargs[0] = args[0]
		newargs[1] = args[0]
		newargs[2] = args[1]

	case C_SWSP:
		f.op = SW
		newargs[0] = args[0]
		newargs[1] = RegOffset{Reg(X2), Simm{int32(args[1].(Uimm).Imm), true, 12}}

	// riscv64 compressed instructions
	case C_LD:
		f.op = LD
		newargs[0] = args[0]
		newargs[1] = RegOffset{args[1].(Reg), Simm{int32(args[2].(Uimm).Imm), true, 12}}

	case C_SD:
		f.op = SD
		newargs[0] = args[1]
		newargs[1] = RegOffset{args[0].(Reg), Simm{int32(args[2].(Uimm).Imm), true, 12}}

	case C_ADDIW:
		f.op = ADDIW
		newargs[0] = args[0]
		newargs[1] = args[0]
		newargs[2] = Simm{args[1].(Simm).Imm, true, 12}

	case C_SRLI:
		f.op = SRLI
		newargs[0] = args[0]
		newargs[1] = args[0]
		newargs[2] = args[1]

	case C_SRAI:
		f.op = SRAI
		newargs[0] = args[0]
		newargs[1] = args[0]
		newargs[2] = args[1]

	case C_SUBW:
		f.op = SUBW
		newargs[0] = args[0]
		newargs[1] = args[0]
		newargs[2] = args[1]

	case C_ADDW:
		f.op = ADDW
		newargs[0] = args[0]
		newargs[1] = args[0]
		newargs[2] = args[1]

	case C_SLLI:
		f.op = SLLI
		newargs[0] = args[0]
		newargs[1] = args[0]
		newargs[2] = args[1]

	case C_LDSP:
		f.op = LD
		newargs[0] = args[0]
		newargs[1] = RegOffset{Reg(X2), Simm{int32(args[1].(Uimm).Imm), true, 12}}

	case C_SDSP:
		f.op = SD
		newargs[0] = args[0]
		newargs[1] = RegOffset{Reg(X2), Simm{int32(args[1].(Uimm).Imm), true, 12}}

	// riscv double precision floating point compressed instructions
	case C_FLD:
		f.op = FLD
		newargs[0] = args[0]
		newargs[1] = RegOffset{args[1].(Reg), Simm{int32(args[2].(Uimm).Imm), true, 12}}

	case C_FSD:
		f.op = FSD
		newargs[0] = args[1]
		newargs[1] = RegOffset{args[0].(Reg), Simm{int32(args[2].(Uimm).Imm), true, 12}}

	case C_FLDSP:
		f.op = FLD
		newargs[0] = args[0]
		newargs[1] = RegOffset{Reg(X2), Simm{int32(args[1].(Uimm).Imm), true, 12}}

	case C_FSDSP:
		f.op = FSD
		newargs[0] = args[0]
		newargs[1] = RegOffset{Reg(X2), Simm{int32(args[1].(Uimm).Imm), true, 12}}

	case C_UNIMP:
		f.op = CSRRW
		newargs[0] = Reg(X0)
		newargs[1] = CSR(CYCLE)
		newargs[2] = Reg(X0)
	}
	return newargs
}