1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
|
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package riscv64asm
import (
"encoding/binary"
"errors"
)
type argTypeList [6]argType
// An instFormat describes the format of an instruction encoding.
type instFormat struct {
mask uint32
value uint32
op Op
// args describe how to decode the instruction arguments.
// args is stored as a fixed-size array.
// if there are fewer than len(args) arguments, args[i] == 0 marks
// the end of the argument list.
args argTypeList
}
var (
errShort = errors.New("truncated instruction")
errUnknown = errors.New("unknown instruction")
)
var decoderCover []bool
func init() {
decoderCover = make([]bool, len(instFormats))
}
// Decode decodes the 4 bytes in src as a single instruction.
func Decode(src []byte) (Inst, error) {
length := len(src)
if length < 2 {
return Inst{}, errShort
}
var x uint32
// Non-RVC instructions always starts with 0x11
// So check whether src[0] & 3 == 3
if src[0]&3 == 3 {
if length < 4 {
return Inst{}, errShort
}
length = 4
x = binary.LittleEndian.Uint32(src)
} else {
length = 2
x = uint32(binary.LittleEndian.Uint16(src))
}
Search:
for i, f := range instFormats {
if (x & f.mask) != f.value {
continue
}
// Decode args.
var args Args
for j, aop := range f.args {
if aop == 0 {
break
}
arg := decodeArg(aop, x, i)
if arg == nil && f.op != C_NOP {
// Cannot decode argument.
continue Search
}
args[j] = arg
}
if length == 2 {
args = convertCompressedIns(&f, args)
}
decoderCover[i] = true
inst := Inst{
Op: f.op,
Args: args,
Enc: x,
Len: length,
}
return inst, nil
}
return Inst{}, errUnknown
}
// decodeArg decodes the arg described by aop from the instruction bits x.
// It returns nil if x cannot be decoded according to aop.
func decodeArg(aop argType, x uint32, index int) Arg {
switch aop {
case arg_rd:
return X0 + Reg((x>>7)&((1<<5)-1))
case arg_rs1:
return X0 + Reg((x>>15)&((1<<5)-1))
case arg_rs2:
return X0 + Reg((x>>20)&((1<<5)-1))
case arg_rs3:
return X0 + Reg((x>>27)&((1<<5)-1))
case arg_fd:
return F0 + Reg((x>>7)&((1<<5)-1))
case arg_fs1:
return F0 + Reg((x>>15)&((1<<5)-1))
case arg_fs2:
return F0 + Reg((x>>20)&((1<<5)-1))
case arg_fs3:
return F0 + Reg((x>>27)&((1<<5)-1))
case arg_rs1_amo:
return AmoReg{X0 + Reg((x>>15)&((1<<5)-1))}
case arg_rs1_mem:
imm := x >> 20
// Sign-extend
if imm>>uint32(12-1) == 1 {
imm |= 0xfffff << 12
}
return RegOffset{X0 + Reg((x>>15)&((1<<5)-1)), Simm{int32(imm), true, 12}}
case arg_rs1_store:
imm := (x<<20)>>27 | (x>>25)<<5
// Sign-extend
if imm>>uint32(12-1) == 1 {
imm |= 0xfffff << 12
}
return RegOffset{X0 + Reg((x>>15)&((1<<5)-1)), Simm{int32(imm), true, 12}}
case arg_pred:
imm := x << 4 >> 28
return MemOrder(uint8(imm))
case arg_succ:
imm := x << 8 >> 28
return MemOrder(uint8(imm))
case arg_csr:
imm := x >> 20
return CSR(imm)
case arg_zimm:
imm := x << 12 >> 27
return Uimm{imm, true}
case arg_shamt5:
imm := x << 7 >> 27
return Uimm{imm, false}
case arg_shamt6:
imm := x << 6 >> 26
return Uimm{imm, false}
case arg_imm12:
imm := x >> 20
// Sign-extend
if imm>>uint32(12-1) == 1 {
imm |= 0xfffff << 12
}
return Simm{int32(imm), true, 12}
case arg_imm20:
imm := x >> 12
return Uimm{imm, false}
case arg_jimm20:
imm := (x>>31)<<20 | (x<<1)>>22<<1 | (x<<11)>>31<<11 | (x<<12)>>24<<12
// Sign-extend
if imm>>uint32(21-1) == 1 {
imm |= 0x7ff << 21
}
return Simm{int32(imm), true, 21}
case arg_simm12:
imm := (x<<20)>>27 | (x>>25)<<5
// Sign-extend
if imm>>uint32(12-1) == 1 {
imm |= 0xfffff << 12
}
return Simm{int32(imm), true, 12}
case arg_bimm12:
imm := (x<<20)>>28<<1 | (x<<1)>>26<<5 | (x<<24)>>31<<11 | (x>>31)<<12
// Sign-extend
if imm>>uint32(13-1) == 1 {
imm |= 0x7ffff << 13
}
return Simm{int32(imm), true, 13}
case arg_rd_p, arg_rs2_p:
return X8 + Reg((x>>2)&((1<<3)-1))
case arg_fd_p, arg_fs2_p:
return F8 + Reg((x>>2)&((1<<3)-1))
case arg_rs1_p, arg_rd_rs1_p:
return X8 + Reg((x>>7)&((1<<3)-1))
case arg_rd_n0, arg_rs1_n0, arg_rd_rs1_n0, arg_c_rs1_n0:
if X0+Reg((x>>7)&((1<<5)-1)) == X0 {
return nil
}
return X0 + Reg((x>>7)&((1<<5)-1))
case arg_c_rs2_n0:
if X0+Reg((x>>2)&((1<<5)-1)) == X0 {
return nil
}
return X0 + Reg((x>>2)&((1<<5)-1))
case arg_c_fs2:
return F0 + Reg((x>>2)&((1<<5)-1))
case arg_c_rs2:
return X0 + Reg((x>>2)&((1<<5)-1))
case arg_rd_n2:
if X0+Reg((x>>7)&((1<<5)-1)) == X0 || X0+Reg((x>>7)&((1<<5)-1)) == X2 {
return nil
}
return X0 + Reg((x>>7)&((1<<5)-1))
case arg_c_imm6:
imm := (x<<25)>>27 | (x<<19)>>31<<5
// Sign-extend
if imm>>uint32(6-1) == 1 {
imm |= 0x3ffffff << 6
}
return Simm{int32(imm), true, 6}
case arg_c_nzimm6:
imm := (x<<25)>>27 | (x<<19)>>31<<5
// Sign-extend
if imm>>uint32(6-1) == 1 {
imm |= 0x3ffffff << 6
}
if int32(imm) == 0 {
return nil
}
return Simm{int32(imm), true, 6}
case arg_c_nzuimm6:
imm := (x<<25)>>27 | (x<<19)>>31<<5
if int32(imm) == 0 {
return nil
}
return Uimm{imm, false}
case arg_c_uimm7:
imm := (x<<26)>>31<<6 | (x<<25)>>31<<2 | (x<<19)>>29<<3
return Uimm{imm, false}
case arg_c_uimm8:
imm := (x<<25)>>30<<6 | (x<<19)>>29<<3
return Uimm{imm, false}
case arg_c_uimm8sp_s:
imm := (x<<23)>>30<<6 | (x<<19)>>28<<2
return Uimm{imm, false}
case arg_c_uimm8sp:
imm := (x<<25)>>29<<2 | (x<<19)>>31<<5 | (x<<28)>>30<<6
return Uimm{imm, false}
case arg_c_uimm9sp_s:
imm := (x<<22)>>29<<6 | (x<<19)>>29<<3
return Uimm{imm, false}
case arg_c_uimm9sp:
imm := (x<<25)>>30<<3 | (x<<19)>>31<<5 | (x<<27)>>29<<6
return Uimm{imm, false}
case arg_c_bimm9:
imm := (x<<29)>>31<<5 | (x<<27)>>30<<1 | (x<<25)>>30<<6 | (x<<19)>>31<<8 | (x<<20)>>30<<3
// Sign-extend
if imm>>uint32(9-1) == 1 {
imm |= 0x7fffff << 9
}
return Simm{int32(imm), true, 9}
case arg_c_nzimm10:
imm := (x<<29)>>31<<5 | (x<<27)>>30<<7 | (x<<26)>>31<<6 | (x<<25)>>31<<4 | (x<<19)>>31<<9
// Sign-extend
if imm>>uint32(10-1) == 1 {
imm |= 0x3fffff << 10
}
if int32(imm) == 0 {
return nil
}
return Simm{int32(imm), true, 10}
case arg_c_nzuimm10:
imm := (x<<26)>>31<<3 | (x<<25)>>31<<2 | (x<<21)>>28<<6 | (x<<19)>>30<<4
if int32(imm) == 0 {
return nil
}
return Uimm{imm, false}
case arg_c_imm12:
imm := (x<<29)>>31<<5 | (x<<26)>>28<<1 | (x<<25)>>31<<7 | (x<<24)>>31<<6 | (x<<23)>>31<<10 | (x<<21)>>30<<8 | (x<<20)>>31<<4 | (x<<19)>>31<<11
// Sign-extend
if imm>>uint32(12-1) == 1 {
imm |= 0xfffff << 12
}
return Simm{int32(imm), true, 12}
case arg_c_nzimm18:
imm := (x<<25)>>27<<12 | (x<<19)>>31<<17
// Sign-extend
if imm>>uint32(18-1) == 1 {
imm |= 0x3fff << 18
}
if int32(imm) == 0 {
return nil
}
return Simm{int32(imm), true, 18}
default:
return nil
}
}
// convertCompressedIns rewrites the RVC Instruction to regular Instructions
func convertCompressedIns(f *instFormat, args Args) Args {
var newargs Args
switch f.op {
case C_ADDI4SPN:
f.op = ADDI
newargs[0] = args[0]
newargs[1] = Reg(X2)
newargs[2] = Simm{int32(args[1].(Uimm).Imm), true, 12}
case C_LW:
f.op = LW
newargs[0] = args[0]
newargs[1] = RegOffset{args[1].(Reg), Simm{int32(args[2].(Uimm).Imm), true, 12}}
case C_SW:
f.op = SW
newargs[0] = args[1]
newargs[1] = RegOffset{args[0].(Reg), Simm{int32(args[2].(Uimm).Imm), true, 12}}
case C_NOP:
f.op = ADDI
newargs[0] = X0
newargs[1] = X0
newargs[2] = Simm{0, true, 12}
case C_ADDI:
f.op = ADDI
newargs[0] = args[0]
newargs[1] = args[0]
newargs[2] = Simm{args[1].(Simm).Imm, true, 12}
case C_LI:
f.op = ADDI
newargs[0] = args[0]
newargs[1] = Reg(X0)
newargs[2] = Simm{args[1].(Simm).Imm, true, 12}
case C_ADDI16SP:
f.op = ADDI
newargs[0] = Reg(X2)
newargs[1] = Reg(X2)
newargs[2] = Simm{args[0].(Simm).Imm, true, 12}
case C_LUI:
f.op = LUI
newargs[0] = args[0]
newargs[1] = Uimm{uint32(args[1].(Simm).Imm >> 12), false}
case C_ANDI:
f.op = ANDI
newargs[0] = args[0]
newargs[1] = args[0]
newargs[2] = Simm{args[1].(Simm).Imm, true, 12}
case C_SUB:
f.op = SUB
newargs[0] = args[0]
newargs[1] = args[0]
newargs[2] = args[1]
case C_XOR:
f.op = XOR
newargs[0] = args[0]
newargs[1] = args[0]
newargs[2] = args[1]
case C_OR:
f.op = OR
newargs[0] = args[0]
newargs[1] = args[0]
newargs[2] = args[1]
case C_AND:
f.op = AND
newargs[0] = args[0]
newargs[1] = args[0]
newargs[2] = args[1]
case C_J:
f.op = JAL
newargs[0] = Reg(X0)
newargs[1] = Simm{args[0].(Simm).Imm, true, 21}
case C_BEQZ:
f.op = BEQ
newargs[0] = args[0]
newargs[1] = Reg(X0)
newargs[2] = Simm{args[1].(Simm).Imm, true, 13}
case C_BNEZ:
f.op = BNE
newargs[0] = args[0]
newargs[1] = Reg(X0)
newargs[2] = Simm{args[1].(Simm).Imm, true, 13}
case C_LWSP:
f.op = LW
newargs[0] = args[0]
newargs[1] = RegOffset{Reg(X2), Simm{int32(args[1].(Uimm).Imm), true, 12}}
case C_JR:
f.op = JALR
newargs[0] = Reg(X0)
newargs[1] = RegOffset{args[0].(Reg), Simm{0, true, 12}}
case C_MV:
f.op = ADD
newargs[0] = args[0]
newargs[1] = Reg(X0)
newargs[2] = args[1]
case C_EBREAK:
f.op = EBREAK
case C_JALR:
f.op = JALR
newargs[0] = Reg(X1)
newargs[1] = RegOffset{args[0].(Reg), Simm{0, true, 12}}
case C_ADD:
f.op = ADD
newargs[0] = args[0]
newargs[1] = args[0]
newargs[2] = args[1]
case C_SWSP:
f.op = SW
newargs[0] = args[0]
newargs[1] = RegOffset{Reg(X2), Simm{int32(args[1].(Uimm).Imm), true, 12}}
// riscv64 compressed instructions
case C_LD:
f.op = LD
newargs[0] = args[0]
newargs[1] = RegOffset{args[1].(Reg), Simm{int32(args[2].(Uimm).Imm), true, 12}}
case C_SD:
f.op = SD
newargs[0] = args[1]
newargs[1] = RegOffset{args[0].(Reg), Simm{int32(args[2].(Uimm).Imm), true, 12}}
case C_ADDIW:
f.op = ADDIW
newargs[0] = args[0]
newargs[1] = args[0]
newargs[2] = Simm{args[1].(Simm).Imm, true, 12}
case C_SRLI:
f.op = SRLI
newargs[0] = args[0]
newargs[1] = args[0]
newargs[2] = args[1]
case C_SRAI:
f.op = SRAI
newargs[0] = args[0]
newargs[1] = args[0]
newargs[2] = args[1]
case C_SUBW:
f.op = SUBW
newargs[0] = args[0]
newargs[1] = args[0]
newargs[2] = args[1]
case C_ADDW:
f.op = ADDW
newargs[0] = args[0]
newargs[1] = args[0]
newargs[2] = args[1]
case C_SLLI:
f.op = SLLI
newargs[0] = args[0]
newargs[1] = args[0]
newargs[2] = args[1]
case C_LDSP:
f.op = LD
newargs[0] = args[0]
newargs[1] = RegOffset{Reg(X2), Simm{int32(args[1].(Uimm).Imm), true, 12}}
case C_SDSP:
f.op = SD
newargs[0] = args[0]
newargs[1] = RegOffset{Reg(X2), Simm{int32(args[1].(Uimm).Imm), true, 12}}
// riscv double precision floating point compressed instructions
case C_FLD:
f.op = FLD
newargs[0] = args[0]
newargs[1] = RegOffset{args[1].(Reg), Simm{int32(args[2].(Uimm).Imm), true, 12}}
case C_FSD:
f.op = FSD
newargs[0] = args[1]
newargs[1] = RegOffset{args[0].(Reg), Simm{int32(args[2].(Uimm).Imm), true, 12}}
case C_FLDSP:
f.op = FLD
newargs[0] = args[0]
newargs[1] = RegOffset{Reg(X2), Simm{int32(args[1].(Uimm).Imm), true, 12}}
case C_FSDSP:
f.op = FSD
newargs[0] = args[0]
newargs[1] = RegOffset{Reg(X2), Simm{int32(args[1].(Uimm).Imm), true, 12}}
case C_UNIMP:
f.op = CSRRW
newargs[0] = Reg(X0)
newargs[1] = CSR(CYCLE)
newargs[2] = Reg(X0)
}
return newargs
}
|