1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
|
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Support for testing against external disassembler program.
package x86asm
import (
"bufio"
"bytes"
"encoding/hex"
"flag"
"fmt"
"io"
"io/ioutil"
"log"
"math/rand"
"os"
"os/exec"
"regexp"
"runtime"
"strings"
"testing"
"time"
)
var (
printTests = flag.Bool("printtests", false, "print test cases that exercise new code paths")
dumpTest = flag.Bool("dump", false, "dump all encodings")
mismatch = flag.Bool("mismatch", false, "log allowed mismatches")
longTest = flag.Bool("long", false, "long test")
keep = flag.Bool("keep", false, "keep object files around")
debug = false
)
// An ExtInst represents a single decoded instruction parsed
// from an external disassembler's output.
type ExtInst struct {
addr uint32
enc [32]byte
nenc int
text string
}
func (r ExtInst) String() string {
return fmt.Sprintf("%#x: % x: %s", r.addr, r.enc, r.text)
}
// An ExtDis is a connection between an external disassembler and a test.
type ExtDis struct {
Arch int
Dec chan ExtInst
File *os.File
Size int
KeepFile bool
Cmd *exec.Cmd
}
// Run runs the given command - the external disassembler - and returns
// a buffered reader of its standard output.
func (ext *ExtDis) Run(cmd ...string) (*bufio.Reader, error) {
if *keep {
log.Printf("%s\n", strings.Join(cmd, " "))
}
ext.Cmd = exec.Command(cmd[0], cmd[1:]...)
out, err := ext.Cmd.StdoutPipe()
if err != nil {
return nil, fmt.Errorf("stdoutpipe: %v", err)
}
if err := ext.Cmd.Start(); err != nil {
return nil, fmt.Errorf("exec: %v", err)
}
b := bufio.NewReaderSize(out, 1<<20)
return b, nil
}
// Wait waits for the command started with Run to exit.
func (ext *ExtDis) Wait() error {
return ext.Cmd.Wait()
}
// testExtDis tests a set of byte sequences against an external disassembler.
// The disassembler is expected to produce the given syntax and be run
// in the given architecture mode (16, 32, or 64-bit).
// The extdis function must start the external disassembler
// and then parse its output, sending the parsed instructions on ext.Dec.
// The generate function calls its argument f once for each byte sequence
// to be tested. The generate function itself will be called twice, and it must
// make the same sequence of calls to f each time.
// When a disassembly does not match the internal decoding,
// allowedMismatch determines whether this mismatch should be
// allowed, or else considered an error.
func testExtDis(
t *testing.T,
syntax string,
arch int,
extdis func(ext *ExtDis) error,
generate func(f func([]byte)),
allowedMismatch func(text string, size int, inst *Inst, dec ExtInst) bool,
) {
decoderCover = make([]bool, len(decoder))
defer func() {
decoderCover = nil
}()
start := time.Now()
ext := &ExtDis{
Dec: make(chan ExtInst),
Arch: arch,
}
errc := make(chan error)
// First pass: write instructions to input file for external disassembler.
file, f, size, err := writeInst(generate)
if err != nil {
t.Fatal(err)
}
ext.Size = size
ext.File = f
defer func() {
f.Close()
if !*keep {
os.Remove(file)
}
}()
// Second pass: compare disassembly against our decodings.
var (
totalTests = 0
totalSkips = 0
totalErrors = 0
errors = make([]string, 0, 100) // sampled errors, at most cap
)
go func() {
errc <- extdis(ext)
}()
generate(func(enc []byte) {
dec, ok := <-ext.Dec
if !ok {
t.Errorf("decoding stream ended early")
return
}
inst, text := disasm(syntax, arch, pad(enc))
totalTests++
if *dumpTest {
fmt.Printf("%x -> %s [%d]\n", enc[:len(enc)], dec.text, dec.nenc)
}
if text != dec.text || inst.Len != dec.nenc {
suffix := ""
if allowedMismatch(text, size, &inst, dec) {
totalSkips++
if !*mismatch {
return
}
suffix += " (allowed mismatch)"
}
totalErrors++
if len(errors) >= cap(errors) {
j := rand.Intn(totalErrors)
if j >= cap(errors) {
return
}
errors = append(errors[:j], errors[j+1:]...)
}
errors = append(errors, fmt.Sprintf("decode(%x) = %q, %d, want %q, %d%s", enc, text, inst.Len, dec.text, dec.nenc, suffix))
}
})
if *mismatch {
totalErrors -= totalSkips
}
for _, b := range errors {
t.Log(b)
}
if totalErrors > 0 {
t.Fail()
}
t.Logf("%d test cases, %d expected mismatches, %d failures; %.0f cases/second", totalTests, totalSkips, totalErrors, float64(totalTests)/time.Since(start).Seconds())
if err := <-errc; err != nil {
t.Fatalf("external disassembler: %v", err)
}
}
const start = 0x8000 // start address of text
// writeInst writes the generated byte sequences to a new file
// starting at offset start. That file is intended to be the input to
// the external disassembler.
func writeInst(generate func(func([]byte))) (file string, f *os.File, size int, err error) {
f, err = ioutil.TempFile("", "x86map")
if err != nil {
return
}
file = f.Name()
f.Seek(start, io.SeekStart)
w := bufio.NewWriter(f)
defer w.Flush()
size = 0
generate(func(x []byte) {
if len(x) > 16 {
x = x[:16]
}
if debug {
fmt.Printf("%#x: %x%x\n", start+size, x, pops[len(x):])
}
w.Write(x)
w.Write(pops[len(x):])
size += len(pops)
})
return file, f, size, nil
}
// 0x5F is a single-byte pop instruction.
// We pad the bytes we want decoded with enough 0x5Fs
// that no matter what state the instruction stream is in
// after reading our bytes, the pops will get us back to
// a forced instruction boundary.
var pops = []byte{
0x5f, 0x5f, 0x5f, 0x5f, 0x5f, 0x5f, 0x5f, 0x5f,
0x5f, 0x5f, 0x5f, 0x5f, 0x5f, 0x5f, 0x5f, 0x5f,
0x5f, 0x5f, 0x5f, 0x5f, 0x5f, 0x5f, 0x5f, 0x5f,
0x5f, 0x5f, 0x5f, 0x5f, 0x5f, 0x5f, 0x5f, 0x5f,
}
// pad pads the code sequence with pops.
func pad(enc []byte) []byte {
return append(enc[:len(enc):len(enc)], pops...)
}
// disasm returns the decoded instruction and text
// for the given source bytes, using the given syntax and mode.
func disasm(syntax string, mode int, src []byte) (inst Inst, text string) {
// If printTests is set, we record the coverage value
// before and after, and we write out the inputs for which
// coverage went up, in the format expected in testdata/decode.text.
// This produces a fairly small set of test cases that exercise nearly
// all the code.
var cover float64
if *printTests {
cover -= coverage()
}
inst, err := decode1(src, mode, syntax == "gnu")
if err != nil {
text = "error: " + err.Error()
} else {
switch syntax {
case "gnu":
text = GNUSyntax(inst, 0, nil)
case "intel":
text = IntelSyntax(inst, 0, nil)
case "plan9": // [sic]
text = GoSyntax(inst, 0, nil)
default:
text = "error: unknown syntax " + syntax
}
}
if *printTests {
cover += coverage()
if cover > 0 {
max := len(src)
if max > 16 && inst.Len <= 16 {
max = 16
}
fmt.Printf("%x|%x\t%d\t%s\t%s\n", src[:inst.Len], src[inst.Len:max], mode, syntax, text)
}
}
return
}
// coverage returns a floating point number denoting the
// test coverage until now. The number increases when new code paths are exercised,
// both in the Go program and in the decoder byte code.
func coverage() float64 {
/*
testing.Coverage is not in the main distribution.
The implementation, which must go in package testing, is:
// Coverage reports the current code coverage as a fraction in the range [0, 1].
func Coverage() float64 {
var n, d int64
for _, counters := range cover.Counters {
for _, c := range counters {
if c > 0 {
n++
}
d++
}
}
if d == 0 {
return 0
}
return float64(n) / float64(d)
}
*/
var f float64
// f += testing.Coverage()
f += decodeCoverage()
return f
}
func decodeCoverage() float64 {
n := 0
for _, t := range decoderCover {
if t {
n++
}
}
return float64(1+n) / float64(1+len(decoderCover))
}
// Helpers for writing disassembler output parsers.
// isPrefix reports whether text is the name of an instruction prefix.
func isPrefix(text string) bool {
return prefixByte[text] > 0
}
// prefixByte maps instruction prefix text to actual prefix byte values.
var prefixByte = map[string]byte{
"es": 0x26,
"cs": 0x2e,
"ss": 0x36,
"ds": 0x3e,
"fs": 0x64,
"gs": 0x65,
"data16": 0x66,
"addr16": 0x67,
"lock": 0xf0,
"repn": 0xf2,
"repne": 0xf2,
"rep": 0xf3,
"repe": 0xf3,
"xacquire": 0xf2,
"xrelease": 0xf3,
"bnd": 0xf2,
"addr32": 0x66,
"data32": 0x67,
}
// hasPrefix reports whether any of the space-separated words in the text s
// begins with any of the given prefixes.
func hasPrefix(s string, prefixes ...string) bool {
for _, prefix := range prefixes {
for s := s; s != ""; {
if strings.HasPrefix(s, prefix) {
return true
}
i := strings.Index(s, " ")
if i < 0 {
break
}
s = s[i+1:]
}
}
return false
}
// contains reports whether the text s contains any of the given substrings.
func contains(s string, substrings ...string) bool {
for _, sub := range substrings {
if strings.Contains(s, sub) {
return true
}
}
return false
}
// isHex reports whether b is a hexadecimal character (0-9A-Fa-f).
func isHex(b byte) bool { return b == '0' || unhex[b] > 0 }
// parseHex parses the hexadecimal byte dump in hex,
// appending the parsed bytes to raw and returning the updated slice.
// The returned bool signals whether any invalid hex was found.
// Spaces and tabs between bytes are okay but any other non-hex is not.
func parseHex(hex []byte, raw []byte) ([]byte, bool) {
hex = trimSpace(hex)
for j := 0; j < len(hex); {
for hex[j] == ' ' || hex[j] == '\t' {
j++
}
if j >= len(hex) {
break
}
if j+2 > len(hex) || !isHex(hex[j]) || !isHex(hex[j+1]) {
return nil, false
}
raw = append(raw, unhex[hex[j]]<<4|unhex[hex[j+1]])
j += 2
}
return raw, true
}
var unhex = [256]byte{
'0': 0,
'1': 1,
'2': 2,
'3': 3,
'4': 4,
'5': 5,
'6': 6,
'7': 7,
'8': 8,
'9': 9,
'A': 10,
'B': 11,
'C': 12,
'D': 13,
'E': 14,
'F': 15,
'a': 10,
'b': 11,
'c': 12,
'd': 13,
'e': 14,
'f': 15,
}
// index is like bytes.Index(s, []byte(t)) but avoids the allocation.
func index(s []byte, t string) int {
i := 0
for {
j := bytes.IndexByte(s[i:], t[0])
if j < 0 {
return -1
}
i = i + j
if i+len(t) > len(s) {
return -1
}
for k := 1; k < len(t); k++ {
if s[i+k] != t[k] {
goto nomatch
}
}
return i
nomatch:
i++
}
}
// fixSpace rewrites runs of spaces, tabs, and newline characters into single spaces in s.
// If s must be rewritten, it is rewritten in place.
func fixSpace(s []byte) []byte {
s = trimSpace(s)
for i := 0; i < len(s); i++ {
if s[i] == '\t' || s[i] == '\n' || i > 0 && s[i] == ' ' && s[i-1] == ' ' {
goto Fix
}
}
return s
Fix:
b := s
w := 0
for i := 0; i < len(s); i++ {
c := s[i]
if c == '\t' || c == '\n' {
c = ' '
}
if c == ' ' && w > 0 && b[w-1] == ' ' {
continue
}
b[w] = c
w++
}
if w > 0 && b[w-1] == ' ' {
w--
}
return b[:w]
}
// trimSpace trims leading and trailing space from s, returning a subslice of s.
func trimSpace(s []byte) []byte {
j := len(s)
for j > 0 && (s[j-1] == ' ' || s[j-1] == '\t' || s[j-1] == '\n') {
j--
}
i := 0
for i < j && (s[i] == ' ' || s[i] == '\t') {
i++
}
return s[i:j]
}
// pcrel and pcrelw match instructions using relative addressing mode.
var (
pcrel = regexp.MustCompile(`^((?:.* )?(?:j[a-z]+|call|ljmp|loopn?e?w?|xbegin)q?(?:,p[nt])?) 0x([0-9a-f]+)$`)
pcrelw = regexp.MustCompile(`^((?:.* )?(?:callw|jmpw|xbeginw|ljmpw)(?:,p[nt])?) 0x([0-9a-f]+)$`)
)
// Generators.
//
// The test cases are described as functions that invoke a callback repeatedly,
// with a new input sequence each time. These helpers make writing those
// a little easier.
// hexCases generates the cases written in hexadecimal in the encoded string.
// Spaces in 'encoded' separate entire test cases, not individual bytes.
func hexCases(t *testing.T, encoded string) func(func([]byte)) {
return func(try func([]byte)) {
for _, x := range strings.Fields(encoded) {
src, err := hex.DecodeString(x)
if err != nil {
t.Errorf("parsing %q: %v", x, err)
}
try(src)
}
}
}
// testdataCases generates the test cases recorded in testdata/decode.txt.
// It only uses the inputs; it ignores the answers recorded in that file.
func testdataCases(t *testing.T) func(func([]byte)) {
var codes [][]byte
data, err := ioutil.ReadFile("testdata/decode.txt")
if err != nil {
t.Fatal(err)
}
for _, line := range strings.Split(string(data), "\n") {
line = strings.TrimSpace(line)
if line == "" || strings.HasPrefix(line, "#") {
continue
}
f := strings.Fields(line)[0]
i := strings.Index(f, "|")
if i < 0 {
t.Errorf("parsing %q: missing | separator", f)
continue
}
if i%2 != 0 {
t.Errorf("parsing %q: misaligned | separator", f)
}
code, err := hex.DecodeString(f[:i] + f[i+1:])
if err != nil {
t.Errorf("parsing %q: %v", f, err)
continue
}
codes = append(codes, code)
}
return func(try func([]byte)) {
for _, code := range codes {
try(code)
}
}
}
// manyPrefixes generates all possible 2⁹ combinations of nine chosen prefixes.
// The relative ordering of the prefixes within the combinations varies deterministically.
func manyPrefixes(try func([]byte)) {
var prefixBytes = []byte{0x66, 0x67, 0xF0, 0xF2, 0xF3, 0x3E, 0x36, 0x66, 0x67}
var enc []byte
for i := 0; i < 1<<uint(len(prefixBytes)); i++ {
enc = enc[:0]
for j, p := range prefixBytes {
if i&(1<<uint(j)) != 0 {
enc = append(enc, p)
}
}
if len(enc) > 0 {
k := i % len(enc)
enc[0], enc[k] = enc[k], enc[0]
}
try(enc)
}
}
// basicPrefixes geneartes 8 different possible prefix cases: no prefix
// and then one each of seven different prefix bytes.
func basicPrefixes(try func([]byte)) {
try(nil)
for _, b := range []byte{0x66, 0x67, 0xF0, 0xF2, 0xF3, 0x3E, 0x36} {
try([]byte{b})
}
}
func rexPrefixes(try func([]byte)) {
try(nil)
for _, b := range []byte{0x40, 0x48, 0x43, 0x4C} {
try([]byte{b})
}
}
// concat takes two generators and returns a generator for the
// cross product of the two, concatenating the results from each.
func concat(gen1, gen2 func(func([]byte))) func(func([]byte)) {
return func(try func([]byte)) {
gen1(func(enc1 []byte) {
gen2(func(enc2 []byte) {
try(append(enc1[:len(enc1):len(enc1)], enc2...))
})
})
}
}
// concat3 takes three generators and returns a generator for the
// cross product of the three, concatenating the results from each.
func concat3(gen1, gen2, gen3 func(func([]byte))) func(func([]byte)) {
return func(try func([]byte)) {
gen1(func(enc1 []byte) {
gen2(func(enc2 []byte) {
gen3(func(enc3 []byte) {
try(append(append(enc1[:len(enc1):len(enc1)], enc2...), enc3...))
})
})
})
}
}
// concat4 takes four generators and returns a generator for the
// cross product of the four, concatenating the results from each.
func concat4(gen1, gen2, gen3, gen4 func(func([]byte))) func(func([]byte)) {
return func(try func([]byte)) {
gen1(func(enc1 []byte) {
gen2(func(enc2 []byte) {
gen3(func(enc3 []byte) {
gen4(func(enc4 []byte) {
try(append(append(append(enc1[:len(enc1):len(enc1)], enc2...), enc3...), enc4...))
})
})
})
})
}
}
// filter generates the sequences from gen that satisfy ok.
func filter(gen func(func([]byte)), ok func([]byte) bool) func(func([]byte)) {
return func(try func([]byte)) {
gen(func(enc []byte) {
if ok(enc) {
try(enc)
}
})
}
}
// enum8bit generates all possible 1-byte sequences, followed by distinctive padding.
func enum8bit(try func([]byte)) {
for i := 0; i < 1<<8; i++ {
try([]byte{byte(i), 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88})
}
}
// enum16bit generates all possible 2-byte sequences, followed by distinctive padding.
func enum16bit(try func([]byte)) {
for i := 0; i < 1<<16; i++ {
try([]byte{byte(i), byte(i >> 8), 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88})
}
}
// enum24bit generates all possible 3-byte sequences, followed by distinctive padding.
func enum24bit(try func([]byte)) {
for i := 0; i < 1<<24; i++ {
try([]byte{byte(i), byte(i >> 8), byte(i >> 16), 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88})
}
}
// enumModRM generates all possible modrm bytes and, for modrm values that indicate
// a following sib byte, all possible modrm, sib combinations.
func enumModRM(try func([]byte)) {
for i := 0; i < 256; i++ {
if (i>>3)&07 == 04 && i>>6 != 3 { // has sib
for j := 0; j < 256; j++ {
try([]byte{0, byte(i), byte(j), 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88}) // byte encodings
try([]byte{1, byte(i), byte(j), 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88}) // word encodings
}
} else {
try([]byte{0, byte(i), 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88}) // byte encodings
try([]byte{1, byte(i), 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88}) // word encodings
}
}
}
// fixed generates the single case b.
// It's mainly useful to prepare an argument for concat or concat3.
func fixed(b ...byte) func(func([]byte)) {
return func(try func([]byte)) {
try(b)
}
}
// testBasic runs the given test function with cases all using opcode as the initial opcode bytes.
// It runs three phases:
//
// First, zero-or-one prefixes followed by opcode followed by all possible 1-byte values.
// If in -short mode, that's all.
//
// Second, zero-or-one prefixes followed by opcode followed by all possible 2-byte values.
// If not in -long mode, that's all. This phase and the next run in parallel with other tests
// (using t.Parallel).
//
// Finally, opcode followed by all possible 3-byte values. The test can take a very long time
// and prints progress messages to package log.
func testBasic(t *testing.T, testfn func(*testing.T, func(func([]byte))), opcode ...byte) {
testfn(t, concat3(basicPrefixes, fixed(opcode...), enum8bit))
if testing.Short() {
return
}
t.Parallel()
testfn(t, concat3(basicPrefixes, fixed(opcode...), enum16bit))
if !*longTest {
return
}
name := caller(2)
op1 := make([]byte, len(opcode)+1)
copy(op1, opcode)
for i := 0; i < 256; i++ {
log.Printf("%s 24-bit: %d/256\n", name, i)
op1[len(opcode)] = byte(i)
testfn(t, concat(fixed(op1...), enum16bit))
}
}
func testBasicREX(t *testing.T, testfn func(*testing.T, func(func([]byte))), opcode ...byte) {
testfn(t, filter(concat4(basicPrefixes, rexPrefixes, fixed(opcode...), enum8bit), isValidREX))
if testing.Short() {
return
}
t.Parallel()
testfn(t, filter(concat4(basicPrefixes, rexPrefixes, fixed(opcode...), enum16bit), isValidREX))
if !*longTest {
return
}
name := caller(2)
op1 := make([]byte, len(opcode)+1)
copy(op1, opcode)
for i := 0; i < 256; i++ {
log.Printf("%s 24-bit: %d/256\n", name, i)
op1[len(opcode)] = byte(i)
testfn(t, filter(concat3(rexPrefixes, fixed(op1...), enum16bit), isValidREX))
}
}
// testPrefix runs the given test function for all many prefix possibilities
// followed by all possible 1-byte sequences.
//
// If in -long mode, it then runs a test of all the prefix possibilities followed
// by all possible 2-byte sequences.
func testPrefix(t *testing.T, testfn func(*testing.T, func(func([]byte)))) {
t.Parallel()
testfn(t, concat(manyPrefixes, enum8bit))
if testing.Short() || !*longTest {
return
}
name := caller(2)
for i := 0; i < 256; i++ {
log.Printf("%s 16-bit: %d/256\n", name, i)
testfn(t, concat3(manyPrefixes, fixed(byte(i)), enum8bit))
}
}
func testPrefixREX(t *testing.T, testfn func(*testing.T, func(func([]byte)))) {
t.Parallel()
testfn(t, filter(concat3(manyPrefixes, rexPrefixes, enum8bit), isValidREX))
if testing.Short() || !*longTest {
return
}
name := caller(2)
for i := 0; i < 256; i++ {
log.Printf("%s 16-bit: %d/256\n", name, i)
testfn(t, filter(concat4(manyPrefixes, rexPrefixes, fixed(byte(i)), enum8bit), isValidREX))
}
}
func caller(skip int) string {
pc, _, _, _ := runtime.Caller(skip)
f := runtime.FuncForPC(pc)
name := "?"
if f != nil {
name = f.Name()
if i := strings.LastIndex(name, "."); i >= 0 {
name = name[i+1:]
}
}
return name
}
func isValidREX(x []byte) bool {
i := 0
for i < len(x) && isPrefixByte(x[i]) {
i++
}
if i < len(x) && Prefix(x[i]).IsREX() {
i++
if i < len(x) {
return !isPrefixByte(x[i]) && !Prefix(x[i]).IsREX()
}
}
return true
}
func isPrefixByte(b byte) bool {
switch b {
case 0x26, 0x2E, 0x36, 0x3E, 0x64, 0x65, 0x66, 0x67, 0xF0, 0xF2, 0xF3:
return true
}
return false
}
|