1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
|
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package server
import (
"bytes"
"fmt"
"golang.org/x/debug/arch"
"golang.org/x/debug/dwarf"
)
// typeAndAddress associates an address in the target with a DWARF type.
type typeAndAddress struct {
Type dwarf.Type
Address uint64
}
// Routines to print a value using DWARF type descriptions.
// TODO: Does this deserve its own package? It has no dependencies on Server.
// A Printer pretty-prints values in the target address space.
// It can be reused after each printing operation to avoid unnecessary
// allocations. However, it is not safe for concurrent access.
type Printer struct {
err error // Sticky error value.
server *Server
dwarf *dwarf.Data
arch *arch.Architecture
printBuf bytes.Buffer // Accumulates the output.
visited map[typeAndAddress]bool // Prevents looping on cyclic data.
}
// printf prints to printBuf.
func (p *Printer) printf(format string, args ...interface{}) {
fmt.Fprintf(&p.printBuf, format, args...)
}
// errorf prints the error to printBuf, then sets the sticky error for the
// printer, if not already set.
func (p *Printer) errorf(format string, args ...interface{}) {
fmt.Fprintf(&p.printBuf, "<"+format+">", args...)
if p.err != nil {
return
}
p.err = fmt.Errorf(format, args...)
}
// NewPrinter returns a printer that can use the Server to access and print
// values of the specified architecture described by the provided DWARF data.
func NewPrinter(arch *arch.Architecture, dwarf *dwarf.Data, server *Server) *Printer {
return &Printer{
server: server,
arch: arch,
dwarf: dwarf,
visited: make(map[typeAndAddress]bool),
}
}
// reset resets the Printer. It must be called before starting a new
// printing operation.
func (p *Printer) reset() {
p.err = nil
p.printBuf.Reset()
// Just wipe the map rather than reallocating. It's almost always tiny.
for k := range p.visited {
delete(p.visited, k)
}
}
// Sprint returns the pretty-printed value of the item with the given name, such as "main.global".
func (p *Printer) Sprint(name string) (string, error) {
entry, err := p.dwarf.LookupEntry(name)
if err != nil {
return "", err
}
p.reset()
switch entry.Tag {
case dwarf.TagVariable: // TODO: What other entries have global location attributes?
var a uint64
iface := entry.Val(dwarf.AttrLocation)
if iface != nil {
a = p.decodeLocation(iface.([]byte))
}
p.printEntryValueAt(entry, a)
default:
p.errorf("unrecognized entry type %s", entry.Tag)
}
return p.printBuf.String(), p.err
}
// Figure 24 of DWARF v4.
const (
locationAddr = 0x03
)
// decodeLocation decodes the dwarf data describing an address.
func (p *Printer) decodeLocation(data []byte) uint64 {
switch data[0] {
case locationAddr:
return p.arch.Uintptr(data[1:])
default:
p.errorf("unimplemented location type %#x", data[0])
}
return 0
}
// SprintEntry returns the pretty-printed value of the item with the specified DWARF Entry and address.
func (p *Printer) SprintEntry(entry *dwarf.Entry, a uint64) (string, error) {
p.reset()
p.printEntryValueAt(entry, a)
return p.printBuf.String(), p.err
}
// printEntryValueAt pretty-prints the data at the specified address.
// using the type information in the Entry.
func (p *Printer) printEntryValueAt(entry *dwarf.Entry, a uint64) {
if a == 0 {
p.printf("<nil>")
return
}
switch entry.Tag {
case dwarf.TagVariable, dwarf.TagFormalParameter:
// OK
default:
p.errorf("unrecognized entry type %s", entry.Tag)
return
}
iface := entry.Val(dwarf.AttrType)
if iface == nil {
p.errorf("no type")
return
}
typ, err := p.dwarf.Type(iface.(dwarf.Offset))
if err != nil {
p.errorf("type lookup: %v", err)
return
}
p.printValueAt(typ, a)
}
// printValueAt pretty-prints the data at the specified address.
// using the provided type information.
func (p *Printer) printValueAt(typ dwarf.Type, a uint64) {
if a != 0 {
// Check if we are repeating the same type and address.
ta := typeAndAddress{typ, a}
if p.visited[ta] {
p.printf("(%v %#x)", typ, a)
return
}
p.visited[ta] = true
}
switch typ := typ.(type) {
case *dwarf.BoolType:
if typ.ByteSize != 1 {
p.errorf("unrecognized bool size %d", typ.ByteSize)
return
}
if b, err := p.server.peekUint8(a); err != nil {
p.errorf("reading bool: %s", err)
} else {
p.printf("%t", b != 0)
}
case *dwarf.PtrType:
if ptr, err := p.server.peekPtr(a); err != nil {
p.errorf("reading pointer: %s", err)
} else {
p.printf("%#x", ptr)
}
case *dwarf.IntType:
// Sad we can't tell a rune from an int32.
if i, err := p.server.peekInt(a, typ.ByteSize); err != nil {
p.errorf("reading integer: %s", err)
} else {
p.printf("%d", i)
}
case *dwarf.UintType:
if u, err := p.server.peekUint(a, typ.ByteSize); err != nil {
p.errorf("reading unsigned integer: %s", err)
} else {
p.printf("%d", u)
}
case *dwarf.FloatType:
buf := make([]byte, typ.ByteSize)
if err := p.server.peekBytes(a, buf); err != nil {
p.errorf("reading float: %s", err)
return
}
switch typ.ByteSize {
case 4:
p.printf("%g", p.arch.Float32(buf))
case 8:
p.printf("%g", p.arch.Float64(buf))
default:
p.errorf("unrecognized float size %d", typ.ByteSize)
}
case *dwarf.ComplexType:
buf := make([]byte, typ.ByteSize)
if err := p.server.peekBytes(a, buf); err != nil {
p.errorf("reading complex: %s", err)
return
}
switch typ.ByteSize {
case 8:
p.printf("%g", p.arch.Complex64(buf))
case 16:
p.printf("%g", p.arch.Complex128(buf))
default:
p.errorf("unrecognized complex size %d", typ.ByteSize)
}
case *dwarf.StructType:
if typ.Kind != "struct" {
// Could be "class" or "union".
p.errorf("can't handle struct type %s", typ.Kind)
return
}
p.printf("%s {", typ.String())
for i, field := range typ.Field {
if i != 0 {
p.printf(", ")
}
p.printValueAt(field.Type, a+uint64(field.ByteOffset))
}
p.printf("}")
case *dwarf.ArrayType:
p.printArrayAt(typ, a)
case *dwarf.InterfaceType:
p.printInterfaceAt(typ, a)
case *dwarf.MapType:
p.printMapAt(typ, a)
case *dwarf.ChanType:
p.printChannelAt(typ, a)
case *dwarf.SliceType:
p.printSliceAt(typ, a)
case *dwarf.StringType:
p.printStringAt(typ, a)
case *dwarf.TypedefType:
p.printValueAt(typ.Type, a)
case *dwarf.FuncType:
p.printf("%v @%#x ", typ, a)
case *dwarf.VoidType:
p.printf("void")
default:
p.errorf("unimplemented type %v", typ)
}
}
func (p *Printer) printArrayAt(typ *dwarf.ArrayType, a uint64) {
elemType := typ.Type
length := typ.Count
stride, ok := p.arrayStride(typ)
if !ok {
p.errorf("can't determine element size")
}
p.printf("%s{", typ)
n := length
if n > 100 {
n = 100 // TODO: Have a way to control this?
}
for i := int64(0); i < n; i++ {
if i != 0 {
p.printf(", ")
}
p.printValueAt(elemType, a)
a += stride // TODO: Alignment and padding - not given by Type
}
if n < length {
p.printf(", ...")
}
p.printf("}")
}
func (p *Printer) printInterfaceAt(t *dwarf.InterfaceType, a uint64) {
// t embeds a TypedefType, which may point to another typedef.
// The underlying type should be a struct.
st, ok := followTypedefs(&t.TypedefType).(*dwarf.StructType)
if !ok {
p.errorf("bad interface type: not a struct")
return
}
p.printf("(")
tab, err := p.server.peekPtrStructField(st, a, "tab")
if err != nil {
p.errorf("reading interface type: %s", err)
} else {
f, err := getField(st, "tab")
if err != nil {
p.errorf("%s", err)
} else {
p.printTypeOfInterface(f.Type, tab)
}
}
p.printf(", ")
data, err := p.server.peekPtrStructField(st, a, "data")
if err != nil {
p.errorf("reading interface value: %s", err)
} else if data == 0 {
p.printf("<nil>")
} else {
p.printf("%#x", data)
}
p.printf(")")
}
// printTypeOfInterface prints the type of the given tab pointer.
func (p *Printer) printTypeOfInterface(t dwarf.Type, a uint64) {
if a == 0 {
p.printf("<nil>")
return
}
// t should be a pointer to a struct containing _type, which is a pointer to a
// struct containing _string, which is the name of the type.
// Depending on the compiler version, some of these types can be typedefs, and
// _string may be a string or a *string.
t1, ok := followTypedefs(t).(*dwarf.PtrType)
if !ok {
p.errorf("interface's tab is not a pointer")
return
}
t2, ok := followTypedefs(t1.Type).(*dwarf.StructType)
if !ok {
p.errorf("interface's tab is not a pointer to struct")
return
}
typeField, err := getField(t2, "_type")
if err != nil {
p.errorf("%s", err)
return
}
t3, ok := followTypedefs(typeField.Type).(*dwarf.PtrType)
if !ok {
p.errorf("interface's _type is not a pointer")
return
}
t4, ok := followTypedefs(t3.Type).(*dwarf.StructType)
if !ok {
p.errorf("interface's _type is not a pointer to struct")
return
}
stringField, err := getField(t4, "_string")
if err != nil {
p.errorf("%s", err)
return
}
if t5, ok := stringField.Type.(*dwarf.PtrType); ok {
stringType, ok := t5.Type.(*dwarf.StringType)
if !ok {
p.errorf("interface _string is a pointer to %T, want string or *string", t5.Type)
return
}
typeAddr, err := p.server.peekPtrStructField(t2, a, "_type")
if err != nil {
p.errorf("reading interface type: %s", err)
return
}
stringAddr, err := p.server.peekPtrStructField(t4, typeAddr, "_string")
if err != nil {
p.errorf("reading interface type: %s", err)
return
}
p.printStringAt(stringType, stringAddr)
} else {
stringType, ok := stringField.Type.(*dwarf.StringType)
if !ok {
p.errorf("interface _string is a %T, want string or *string", stringField.Type)
return
}
typeAddr, err := p.server.peekPtrStructField(t2, a, "_type")
if err != nil {
p.errorf("reading interface type: %s", err)
return
}
stringAddr := typeAddr + uint64(stringField.ByteOffset)
p.printStringAt(stringType, stringAddr)
}
}
// maxMapValuesToPrint values are printed for each map; any remaining values are
// truncated to "...".
const maxMapValuesToPrint = 8
func (p *Printer) printMapAt(typ *dwarf.MapType, a uint64) {
count := 0
fn := func(keyAddr, valAddr uint64, keyType, valType dwarf.Type) (stop bool) {
count++
if count > maxMapValuesToPrint {
return false
}
if count > 1 {
p.printf(" ")
}
p.printValueAt(keyType, keyAddr)
p.printf(":")
p.printValueAt(valType, valAddr)
return true
}
p.printf("map[")
if err := p.server.peekMapValues(typ, a, fn); err != nil {
p.errorf("reading map values: %s", err)
}
if count > maxMapValuesToPrint {
p.printf(" ...")
}
p.printf("]")
}
func (p *Printer) printChannelAt(ct *dwarf.ChanType, a uint64) {
p.printf("(chan %s ", ct.ElemType)
defer p.printf(")")
a, err := p.server.peekPtr(a)
if err != nil {
p.errorf("reading channel: %s", err)
return
}
if a == 0 {
p.printf("<nil>")
return
}
p.printf("%#x", a)
// ct is a typedef for a pointer to a struct.
pt, ok := ct.TypedefType.Type.(*dwarf.PtrType)
if !ok {
p.errorf("bad channel type: not a pointer")
return
}
st, ok := pt.Type.(*dwarf.StructType)
if !ok {
p.errorf("bad channel type: not a pointer to a struct")
return
}
// Print the channel buffer's length (qcount) and capacity (dataqsiz),
// if not 0/0.
qcount, err := p.server.peekUintOrIntStructField(st, a, "qcount")
if err != nil {
p.errorf("reading channel: %s", err)
return
}
dataqsiz, err := p.server.peekUintOrIntStructField(st, a, "dataqsiz")
if err != nil {
p.errorf("reading channel: %s", err)
return
}
if qcount != 0 || dataqsiz != 0 {
p.printf(" [%d/%d]", qcount, dataqsiz)
}
}
func (p *Printer) printSliceAt(typ *dwarf.SliceType, a uint64) {
// Slices look like a struct with fields array *elemtype, len uint32/64, cap uint32/64.
// BUG: Slice header appears to have fields with ByteSize == 0
ptr, err := p.server.peekPtrStructField(&typ.StructType, a, "array")
if err != nil {
p.errorf("reading slice: %s", err)
return
}
length, err := p.server.peekUintOrIntStructField(&typ.StructType, a, "len")
if err != nil {
p.errorf("reading slice: %s", err)
return
}
// Capacity is not used yet.
_, err = p.server.peekUintOrIntStructField(&typ.StructType, a, "cap")
if err != nil {
p.errorf("reading slice: %s", err)
return
}
elemType := typ.ElemType
size, ok := p.sizeof(typ.ElemType)
if !ok {
p.errorf("can't determine element size")
}
p.printf("%s{", typ)
for i := uint64(0); i < length; i++ {
if i != 0 {
p.printf(", ")
}
p.printValueAt(elemType, ptr)
ptr += size // TODO: Alignment and padding - not given by Type
}
p.printf("}")
}
func (p *Printer) printStringAt(typ *dwarf.StringType, a uint64) {
const maxStringSize = 100
if s, err := p.server.peekString(typ, a, maxStringSize); err != nil {
p.errorf("reading string: %s", err)
} else {
p.printf("%q", s)
}
}
// sizeof returns the byte size of the type.
func (p *Printer) sizeof(typ dwarf.Type) (uint64, bool) {
size := typ.Size() // Will be -1 if ByteSize is not set.
if size >= 0 {
return uint64(size), true
}
switch typ.(type) {
case *dwarf.PtrType:
// This is the only one we know of, but more may arise.
return uint64(p.arch.PointerSize), true
}
return 0, false
}
// arrayStride returns the stride of a dwarf.ArrayType in bytes.
func (p *Printer) arrayStride(t *dwarf.ArrayType) (uint64, bool) {
stride := t.StrideBitSize
if stride > 0 {
return uint64(stride / 8), true
}
return p.sizeof(t.Type)
}
// getField finds the *dwarf.StructField in a dwarf.StructType with name fieldName.
func getField(t *dwarf.StructType, fieldName string) (*dwarf.StructField, error) {
var r *dwarf.StructField
for _, f := range t.Field {
if f.Name == fieldName {
if r != nil {
return nil, fmt.Errorf("struct definition repeats field %s", fieldName)
}
r = f
}
}
if r == nil {
return nil, fmt.Errorf("struct field %s missing", fieldName)
}
return r, nil
}
|