File: window.go

package info (click to toggle)
golang-golang-x-exp 0.0~git20150826.1.eb7c1fa-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 2,000 kB
  • ctags: 2,884
  • sloc: objc: 239; ansic: 195; sh: 124; asm: 24; makefile: 8
file content (234 lines) | stat: -rw-r--r-- 6,846 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gldriver

import (
	"image"
	"image/color"
	"image/draw"
	"sync"

	"golang.org/x/exp/shiny/driver/internal/pump"
	"golang.org/x/exp/shiny/screen"
	"golang.org/x/image/math/f64"
	"golang.org/x/mobile/event/paint"
	"golang.org/x/mobile/event/size"
	"golang.org/x/mobile/gl"
)

type windowImpl struct {
	s  *screenImpl
	id uintptr // *C.ScreenGLView

	pump     pump.Pump
	endPaint chan paint.Event

	draw     chan struct{}
	drawDone chan struct{}

	mu sync.Mutex
	sz size.Event
}

func (w *windowImpl) Release() {
	// There are two ways a window can be closed. The first is the user
	// clicks the red button, in which case windowWillClose is called,
	// which calls Go's windowClosing, which does cleanup in
	// releaseCleanup below.
	//
	// The second way is Release is called programmatically. This calls
	// the NSWindow method performClose, which emulates the red button
	// being clicked.
	//
	// If these two approaches race, experiments suggest it is resolved
	// by performClose (which is called serially on the main thread).
	// If that stops being true, there is a check in windowWillClose
	// that avoids the Go cleanup code being invoked more than once.
	closeWindow(w.id)
}

func (w *windowImpl) releaseCleanup() {
	w.pump.Release()
}

func (w *windowImpl) Events() <-chan interface{} { return w.pump.Events() }
func (w *windowImpl) Send(event interface{})     { w.pump.Send(event) }

func (w *windowImpl) Upload(dp image.Point, src screen.Buffer, sr image.Rectangle, sender screen.Sender) {
	// TODO: adjust if dp is outside dst bounds, or sr is outside src bounds.
	// TODO: keep a texture around for this purpose?
	t, err := w.s.NewTexture(sr.Size())
	if err != nil {
		panic(err)
	}
	t.(*textureImpl).upload(dp, src, sr, sender, w)
	w.Draw(f64.Aff3{1, 0, 0, 0, 1, 0}, t, sr, draw.Src, nil)
	t.Release()
}

func (w *windowImpl) Fill(dr image.Rectangle, src color.Color, op draw.Op) {
	if !gl.IsProgram(w.s.fill.program) {
		p, err := compileProgram(fillVertexSrc, fillFragmentSrc)
		if err != nil {
			// TODO: initialize this somewhere else we can better handle the error.
			panic(err.Error())
		}
		w.s.fill.program = p
		w.s.fill.pos = gl.GetAttribLocation(p, "pos")
		w.s.fill.mvp = gl.GetUniformLocation(p, "mvp")
		w.s.fill.color = gl.GetUniformLocation(p, "color")
		w.s.fill.quadXY = gl.CreateBuffer()

		gl.BindBuffer(gl.ARRAY_BUFFER, w.s.fill.quadXY)
		gl.BufferData(gl.ARRAY_BUFFER, quadXYCoords, gl.STATIC_DRAW)
	}

	gl.UseProgram(w.s.fill.program)
	writeAff3(w.s.fill.mvp, w.vertexAff3(dr))

	r, g, b, a := src.RGBA()
	gl.Uniform4f(
		w.s.fill.color,
		float32(r)/65535,
		float32(g)/65535,
		float32(b)/65535,
		float32(a)/65535,
	)

	gl.BindBuffer(gl.ARRAY_BUFFER, w.s.fill.quadXY)
	gl.EnableVertexAttribArray(w.s.fill.pos)
	gl.VertexAttribPointer(w.s.fill.pos, 2, gl.FLOAT, false, 0, 0)

	gl.DrawArrays(gl.TRIANGLE_STRIP, 0, 4)

	gl.DisableVertexAttribArray(w.s.fill.pos)
}

func (w *windowImpl) vertexAff3(r image.Rectangle) f64.Aff3 {
	w.mu.Lock()
	sz := w.sz
	w.mu.Unlock()

	size := r.Size()
	tx, ty := float64(size.X), float64(size.Y)
	wx, wy := float64(sz.WidthPx), float64(sz.HeightPx)
	rx, ry := tx/wx, ty/wy

	// We are drawing the texture src onto the window's framebuffer.
	// The texture is (0,0)-(tx,ty). The window is (0,0)-(wx,wy), which
	// in vertex shader space is
	//
	//	(-1, +1) (+1, +1)
	//	(-1, -1) (+1, -1)
	//
	// A src2dst unit affine transform
	//
	// 	1 0 0
	// 	0 1 0
	// 	0 0 1
	//
	// should result in a (tx,ty) texture appearing in the upper-left
	// (tx, ty) pixels of the window.
	//
	// Setting w.s.texture.mvp to a unit affine transform results in
	// mapping the 2-unit square (-1,+1)-(+1,-1) given by quadXYCoords
	// in texture.go to the same coordinates in vertex shader space.
	// Thus, it results in the whole texture ((tx, ty) in texture
	// space) occupying the whole window ((wx, wy) in window space).
	//
	// A scaling affine transform
	//
	//	rx  0  0
	//	 0 ry  0
	//	 0  0  1
	//
	// results in a (tx, ty) texture occupying (tx, ty) pixels in the
	// center of the window.
	//
	// For upper-left alignment, we want to translate by
	// (-(1-rx), 1-ry), which is the affine transform
	//
	//	1    0   -1+rx
	//	0    1   +1-ry
	//	0    0       1
	//
	// These multiply to give:
	return f64.Aff3{
		rx, 0, -1 + rx,
		0, ry, +1 - ry,
	}
}

func (w *windowImpl) Draw(src2dst f64.Aff3, src screen.Texture, sr image.Rectangle, op draw.Op, opts *screen.DrawOptions) {
	t := src.(*textureImpl)
	a := w.vertexAff3(sr)

	gl.UseProgram(w.s.texture.program)
	writeAff3(w.s.texture.mvp, mul(a, src2dst))

	// OpenGL's fragment shaders' UV coordinates run from (0,0)-(1,1),
	// unlike vertex shaders' XY coordinates running from (-1,+1)-(+1,-1).
	//
	// We are drawing a rectangle PQRS, defined by two of its
	// corners, onto the entire texture. The two quads may actually
	// be equal, but in the general case, PQRS can be smaller.
	//
	//	(0,0) +---------------+ (1,0)
	//	      |  P +-----+ Q  |
	//	      |    |     |    |
	//	      |  S +-----+ R  |
	//	(0,1) +---------------+ (1,1)
	//
	// The PQRS quad is always axis-aligned. First of all, convert
	// from pixel space to texture space.
	tw := float64(t.size.X)
	th := float64(t.size.Y)
	px := float64(sr.Min.X-0) / tw
	py := float64(sr.Min.Y-0) / th
	qx := float64(sr.Max.X-0) / tw
	sy := float64(sr.Max.Y-0) / th
	// Due to axis alignment, qy = py and sx = px.
	//
	// The simultaneous equations are:
	//	  0 +   0 + a02 = px
	//	  0 +   0 + a12 = py
	//	a00 +   0 + a02 = qx
	//	a10 +   0 + a12 = qy = py
	//	  0 + a01 + a02 = sx = px
	//	  0 + a11 + a12 = sy
	writeAff3(w.s.texture.uvp, f64.Aff3{
		qx - px, 0, px,
		0, sy - py, py,
	})

	gl.ActiveTexture(gl.TEXTURE0)
	gl.BindTexture(gl.TEXTURE_2D, t.id)
	gl.Uniform1i(w.s.texture.sample, 0)

	gl.BindBuffer(gl.ARRAY_BUFFER, w.s.texture.quadXY)
	gl.EnableVertexAttribArray(w.s.texture.pos)
	gl.VertexAttribPointer(w.s.texture.pos, 2, gl.FLOAT, false, 0, 0)

	gl.BindBuffer(gl.ARRAY_BUFFER, w.s.texture.quadUV)
	gl.EnableVertexAttribArray(w.s.texture.inUV)
	gl.VertexAttribPointer(w.s.texture.inUV, 2, gl.FLOAT, false, 0, 0)

	gl.DrawArrays(gl.TRIANGLE_STRIP, 0, 4)

	gl.DisableVertexAttribArray(w.s.texture.pos)
	gl.DisableVertexAttribArray(w.s.texture.inUV)
}

func (w *windowImpl) EndPaint(e paint.Event) {
	// gl.Flush is a lightweight (on modern GL drivers) blocking call
	// that ensures all GL functions pending in the gl package have
	// been passed onto the GL driver before the app package attempts
	// to swap the screen buffer.
	//
	// This enforces that the final receive (for this paint cycle) on
	// gl.WorkAvailable happens before the send on endPaint.
	gl.Flush()
	w.endPaint <- e
}