1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
package apidiff
import (
"fmt"
"go/types"
"sort"
)
// Two types are correspond if they are identical except for defined types,
// which must correspond.
//
// Two defined types correspond if they can be interchanged in the old and new APIs,
// possibly after a renaming.
//
// This is not a pure function. If we come across named types while traversing,
// we establish correspondence.
func (d *differ) correspond(old, new types.Type) bool {
return d.corr(old, new, nil)
}
// corr determines whether old and new correspond. The argument p is a list of
// known interface identities, to avoid infinite recursion.
//
// corr calls itself recursively as much as possible, to establish more
// correspondences and so check more of the API. E.g. if the new function has more
// parameters than the old, compare all the old ones before returning false.
//
// Compare this to the implementation of go/types.Identical.
func (d *differ) corr(old, new types.Type, p *ifacePair) bool {
// Structure copied from types.Identical.
switch old := old.(type) {
case *types.Basic:
return types.Identical(old, new)
case *types.Array:
if new, ok := new.(*types.Array); ok {
return d.corr(old.Elem(), new.Elem(), p) && old.Len() == new.Len()
}
case *types.Slice:
if new, ok := new.(*types.Slice); ok {
return d.corr(old.Elem(), new.Elem(), p)
}
case *types.Map:
if new, ok := new.(*types.Map); ok {
return d.corr(old.Key(), new.Key(), p) && d.corr(old.Elem(), new.Elem(), p)
}
case *types.Chan:
if new, ok := new.(*types.Chan); ok {
return d.corr(old.Elem(), new.Elem(), p) && old.Dir() == new.Dir()
}
case *types.Pointer:
if new, ok := new.(*types.Pointer); ok {
return d.corr(old.Elem(), new.Elem(), p)
}
case *types.Signature:
if new, ok := new.(*types.Signature); ok {
pe := d.corr(old.Params(), new.Params(), p)
re := d.corr(old.Results(), new.Results(), p)
return old.Variadic() == new.Variadic() && pe && re
}
case *types.Tuple:
if new, ok := new.(*types.Tuple); ok {
for i := 0; i < old.Len(); i++ {
if i >= new.Len() || !d.corr(old.At(i).Type(), new.At(i).Type(), p) {
return false
}
}
return old.Len() == new.Len()
}
case *types.Struct:
if new, ok := new.(*types.Struct); ok {
for i := 0; i < old.NumFields(); i++ {
if i >= new.NumFields() {
return false
}
of := old.Field(i)
nf := new.Field(i)
if of.Anonymous() != nf.Anonymous() ||
old.Tag(i) != new.Tag(i) ||
!d.corr(of.Type(), nf.Type(), p) ||
!d.corrFieldNames(of, nf) {
return false
}
}
return old.NumFields() == new.NumFields()
}
case *types.Interface:
if new, ok := new.(*types.Interface); ok {
// Deal with circularity. See the comment in types.Identical.
q := &ifacePair{old, new, p}
for p != nil {
if p.identical(q) {
return true // same pair was compared before
}
p = p.prev
}
oldms := d.sortedMethods(old)
newms := d.sortedMethods(new)
for i, om := range oldms {
if i >= len(newms) {
return false
}
nm := newms[i]
if d.methodID(om) != d.methodID(nm) || !d.corr(om.Type(), nm.Type(), q) {
return false
}
}
return old.NumMethods() == new.NumMethods()
}
case *types.Named:
if new, ok := new.(*types.Named); ok {
return d.establishCorrespondence(old, new)
}
if new, ok := new.(*types.Basic); ok {
// Basic types are defined types, too, so we have to support them.
return d.establishCorrespondence(old, new)
}
case *types.TypeParam:
if new, ok := new.(*types.TypeParam); ok {
if old.Index() == new.Index() {
return true
}
}
default:
panic(fmt.Sprintf("unknown type kind %T", old))
}
return false
}
// Compare old and new field names. We are determining correspondence across packages,
// so just compare names, not packages. For an unexported, embedded field of named
// type (non-named embedded fields are possible with aliases), we check that the type
// names correspond. We check the types for correspondence before this is called, so
// we've established correspondence.
func (d *differ) corrFieldNames(of, nf *types.Var) bool {
if of.Anonymous() && nf.Anonymous() && !of.Exported() && !nf.Exported() {
if on, ok := of.Type().(*types.Named); ok {
nn := nf.Type().(*types.Named)
return d.establishCorrespondence(on, nn)
}
}
return of.Name() == nf.Name()
}
// Establish that old corresponds with new if it does not already
// correspond to something else.
func (d *differ) establishCorrespondence(old *types.Named, new types.Type) bool {
oldname := old.Obj()
oldc := d.correspondMap[oldname]
if oldc == nil {
// For now, assume the types don't correspond unless they are from the old
// and new packages, respectively.
//
// This is too conservative. For instance,
// [old] type A = q.B; [new] type A q.C
// could be OK if in package q, B is an alias for C.
// Or, using p as the name of the current old/new packages:
// [old] type A = q.B; [new] type A int
// could be OK if in q,
// [old] type B int; [new] type B = p.A
// In this case, p.A and q.B name the same type in both old and new worlds.
// Note that this case doesn't imply circular package imports: it's possible
// that in the old world, p imports q, but in the new, q imports p.
//
// However, if we didn't do something here, then we'd incorrectly allow cases
// like the first one above in which q.B is not an alias for q.C
//
// What we should do is check that the old type, in the new world's package
// of the same path, doesn't correspond to something other than the new type.
// That is a bit hard, because there is no easy way to find a new package
// matching an old one.
if newn, ok := new.(*types.Named); ok {
if old.Obj().Pkg() != d.old || newn.Obj().Pkg() != d.new {
return old.Obj().Id() == newn.Obj().Id()
}
// Prior to generics, any two named types could correspond.
// Two named types cannot correspond if their type parameter lists don't match.
if !typeParamListsMatch(old.TypeParams(), newn.TypeParams()) {
return false
}
}
// If there is no correspondence, create one.
d.correspondMap[oldname] = new
// Check that the corresponding types are compatible.
d.checkCompatibleDefined(oldname, old, new)
return true
}
return typesEquivalent(oldc, new)
}
// Two list of type parameters match if they are the same length, and
// the constraints of corresponding type parameters are identical.
func typeParamListsMatch(tps1, tps2 *types.TypeParamList) bool {
if tps1.Len() != tps2.Len() {
return false
}
for i := 0; i < tps1.Len(); i++ {
if !types.Identical(tps1.At(i).Constraint(), tps2.At(i).Constraint()) {
return false
}
}
return true
}
// typesEquivalent reports whether two types are identical, or if
// the types have identical type param lists except that one type has nil
// constraints.
//
// This allows us to match a Type from a method receiver or arg to the Type from
// the declaration.
func typesEquivalent(old, new types.Type) bool {
if types.Identical(old, new) {
return true
}
// Handle two types with the same type params, one
// having constraints and one not.
oldn, ok := old.(*types.Named)
if !ok {
return false
}
newn, ok := new.(*types.Named)
if !ok {
return false
}
oldps := oldn.TypeParams()
newps := newn.TypeParams()
if oldps.Len() != newps.Len() {
return false
}
if oldps.Len() == 0 {
// Not generic types.
return false
}
for i := 0; i < oldps.Len(); i++ {
oldp := oldps.At(i)
newp := newps.At(i)
if oldp.Constraint() == nil || newp.Constraint() == nil {
return true
}
if !types.Identical(oldp.Constraint(), newp.Constraint()) {
return false
}
}
return true
}
func (d *differ) sortedMethods(iface *types.Interface) []*types.Func {
ms := make([]*types.Func, iface.NumMethods())
for i := 0; i < iface.NumMethods(); i++ {
ms[i] = iface.Method(i)
}
sort.Slice(ms, func(i, j int) bool { return d.methodID(ms[i]) < d.methodID(ms[j]) })
return ms
}
func (d *differ) methodID(m *types.Func) string {
// If the method belongs to one of the two packages being compared, use
// just its name even if it's unexported. That lets us treat unexported names
// from the old and new packages as equal.
if m.Pkg() == d.old || m.Pkg() == d.new {
return m.Name()
}
return m.Id()
}
// Copied from the go/types package:
// An ifacePair is a node in a stack of interface type pairs compared for identity.
type ifacePair struct {
x, y *types.Interface
prev *ifacePair
}
func (p *ifacePair) identical(q *ifacePair) bool {
return p.x == q.x && p.y == q.y || p.x == q.y && p.y == q.x
}
|