1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gldriver
import (
"image"
"image/color"
"image/draw"
"sync"
"golang.org/x/exp/shiny/driver/internal/drawer"
"golang.org/x/exp/shiny/driver/internal/event"
"golang.org/x/exp/shiny/driver/internal/lifecycler"
"golang.org/x/exp/shiny/screen"
"golang.org/x/image/math/f64"
"golang.org/x/mobile/event/lifecycle"
"golang.org/x/mobile/event/size"
"golang.org/x/mobile/gl"
)
type windowImpl struct {
s *screenImpl
// id is an OS-specific data structure for the window.
// - Cocoa: ScreenGLView*
// - X11: Window
// - Windows: win32.HWND
id uintptr
// ctx is a C data structure for the GL context.
// - Cocoa: uintptr holding a NSOpenGLContext*.
// - X11: uintptr holding an EGLSurface.
// - Windows: ctxWin32
ctx interface{}
lifecycler lifecycler.State
// TODO: Delete the field below (and the useLifecycler constant), and use
// the field above for cocoa and win32.
lifecycleStage lifecycle.Stage // current stage
event.Deque
publish chan struct{}
publishDone chan screen.PublishResult
drawDone chan struct{}
// glctxMu is a mutex that enforces the atomicity of methods like
// Texture.Upload or Window.Draw that are conceptually one operation
// but are implemented by multiple OpenGL calls. OpenGL is a stateful
// API, so interleaving OpenGL calls from separate higher-level
// operations causes inconsistencies.
glctxMu sync.Mutex
glctx gl.Context
worker gl.Worker
// backBufferBound is whether the default Framebuffer, with ID 0, also
// known as the back buffer or the window's Framebuffer, is bound and its
// viewport is known to equal the window size. It can become false when we
// bind to a texture's Framebuffer or when the window size changes.
backBufferBound bool
// szMu protects only sz. If you need to hold both glctxMu and szMu, the
// lock ordering is to lock glctxMu first (and unlock it last).
szMu sync.Mutex
sz size.Event
}
// NextEvent implements the screen.EventDeque interface.
func (w *windowImpl) NextEvent() interface{} {
e := w.Deque.NextEvent()
if handleSizeEventsAtChannelReceive {
if sz, ok := e.(size.Event); ok {
w.glctxMu.Lock()
w.backBufferBound = false
w.szMu.Lock()
w.sz = sz
w.szMu.Unlock()
w.glctxMu.Unlock()
}
}
return e
}
func (w *windowImpl) Release() {
// There are two ways a window can be closed: the Operating System or
// Desktop Environment can initiate (e.g. in response to a user clicking a
// red button), or the Go app can programatically close the window (by
// calling Window.Release).
//
// When the OS closes a window:
// - Cocoa: Obj-C's windowWillClose calls Go's windowClosing.
// - X11: the X11 server sends a WM_DELETE_WINDOW message.
// - Windows: TODO: implement and document this.
//
// This should send a lifecycle event (To: StageDead) to the Go app's event
// loop, which should respond by calling Window.Release (this method).
// Window.Release is where system resources are actually cleaned up.
//
// When Window.Release is called, the closeWindow call below:
// - Cocoa: calls Obj-C's performClose, which emulates the red button
// being clicked. (TODO: document how this actually cleans up
// resources??)
// - X11: calls C's XDestroyWindow.
// - Windows: TODO: implement and document this.
//
// On Cocoa, if these two approaches race, experiments suggest that the
// race is won by performClose (which is called serially on the main
// thread). Even if that isn't true, the windowWillClose handler is
// idempotent.
theScreen.mu.Lock()
delete(theScreen.windows, w.id)
theScreen.mu.Unlock()
closeWindow(w.id)
}
func (w *windowImpl) Upload(dp image.Point, src screen.Buffer, sr image.Rectangle) {
originalSRMin := sr.Min
sr = sr.Intersect(src.Bounds())
if sr.Empty() {
return
}
dp = dp.Add(sr.Min.Sub(originalSRMin))
// TODO: keep a texture around for this purpose?
t, err := w.s.NewTexture(sr.Size())
if err != nil {
panic(err)
}
t.Upload(image.Point{}, src, sr)
w.Draw(f64.Aff3{
1, 0, float64(dp.X),
0, 1, float64(dp.Y),
}, t, t.Bounds(), draw.Src, nil)
t.Release()
}
func useOp(glctx gl.Context, op draw.Op) {
if op == draw.Over {
glctx.Enable(gl.BLEND)
glctx.BlendFunc(gl.ONE, gl.ONE_MINUS_SRC_ALPHA)
} else {
glctx.Disable(gl.BLEND)
}
}
func (w *windowImpl) bindBackBuffer() {
w.szMu.Lock()
sz := w.sz
w.szMu.Unlock()
w.backBufferBound = true
w.glctx.BindFramebuffer(gl.FRAMEBUFFER, gl.Framebuffer{Value: 0})
w.glctx.Viewport(0, 0, sz.WidthPx, sz.HeightPx)
}
func (w *windowImpl) fill(mvp f64.Aff3, src color.Color, op draw.Op) {
w.glctxMu.Lock()
defer w.glctxMu.Unlock()
if !w.backBufferBound {
w.bindBackBuffer()
}
doFill(w.s, w.glctx, mvp, src, op)
}
func doFill(s *screenImpl, glctx gl.Context, mvp f64.Aff3, src color.Color, op draw.Op) {
useOp(glctx, op)
if !glctx.IsProgram(s.fill.program) {
p, err := compileProgram(glctx, fillVertexSrc, fillFragmentSrc)
if err != nil {
// TODO: initialize this somewhere else we can better handle the error.
panic(err.Error())
}
s.fill.program = p
s.fill.pos = glctx.GetAttribLocation(p, "pos")
s.fill.mvp = glctx.GetUniformLocation(p, "mvp")
s.fill.color = glctx.GetUniformLocation(p, "color")
s.fill.quad = glctx.CreateBuffer()
glctx.BindBuffer(gl.ARRAY_BUFFER, s.fill.quad)
glctx.BufferData(gl.ARRAY_BUFFER, quadCoords, gl.STATIC_DRAW)
}
glctx.UseProgram(s.fill.program)
writeAff3(glctx, s.fill.mvp, mvp)
r, g, b, a := src.RGBA()
glctx.Uniform4f(
s.fill.color,
float32(r)/65535,
float32(g)/65535,
float32(b)/65535,
float32(a)/65535,
)
glctx.BindBuffer(gl.ARRAY_BUFFER, s.fill.quad)
glctx.EnableVertexAttribArray(s.fill.pos)
glctx.VertexAttribPointer(s.fill.pos, 2, gl.FLOAT, false, 0, 0)
glctx.DrawArrays(gl.TRIANGLE_STRIP, 0, 4)
glctx.DisableVertexAttribArray(s.fill.pos)
}
func (w *windowImpl) Fill(dr image.Rectangle, src color.Color, op draw.Op) {
minX := float64(dr.Min.X)
minY := float64(dr.Min.Y)
maxX := float64(dr.Max.X)
maxY := float64(dr.Max.Y)
w.fill(w.mvp(
minX, minY,
maxX, minY,
minX, maxY,
), src, op)
}
func (w *windowImpl) DrawUniform(src2dst f64.Aff3, src color.Color, sr image.Rectangle, op draw.Op, opts *screen.DrawOptions) {
minX := float64(sr.Min.X)
minY := float64(sr.Min.Y)
maxX := float64(sr.Max.X)
maxY := float64(sr.Max.Y)
w.fill(w.mvp(
src2dst[0]*minX+src2dst[1]*minY+src2dst[2],
src2dst[3]*minX+src2dst[4]*minY+src2dst[5],
src2dst[0]*maxX+src2dst[1]*minY+src2dst[2],
src2dst[3]*maxX+src2dst[4]*minY+src2dst[5],
src2dst[0]*minX+src2dst[1]*maxY+src2dst[2],
src2dst[3]*minX+src2dst[4]*maxY+src2dst[5],
), src, op)
}
func (w *windowImpl) Draw(src2dst f64.Aff3, src screen.Texture, sr image.Rectangle, op draw.Op, opts *screen.DrawOptions) {
t := src.(*textureImpl)
sr = sr.Intersect(t.Bounds())
if sr.Empty() {
return
}
w.glctxMu.Lock()
defer w.glctxMu.Unlock()
if !w.backBufferBound {
w.bindBackBuffer()
}
useOp(w.glctx, op)
w.glctx.UseProgram(w.s.texture.program)
// Start with src-space left, top, right and bottom.
srcL := float64(sr.Min.X)
srcT := float64(sr.Min.Y)
srcR := float64(sr.Max.X)
srcB := float64(sr.Max.Y)
// Transform to dst-space via the src2dst matrix, then to a MVP matrix.
writeAff3(w.glctx, w.s.texture.mvp, w.mvp(
src2dst[0]*srcL+src2dst[1]*srcT+src2dst[2],
src2dst[3]*srcL+src2dst[4]*srcT+src2dst[5],
src2dst[0]*srcR+src2dst[1]*srcT+src2dst[2],
src2dst[3]*srcR+src2dst[4]*srcT+src2dst[5],
src2dst[0]*srcL+src2dst[1]*srcB+src2dst[2],
src2dst[3]*srcL+src2dst[4]*srcB+src2dst[5],
))
// OpenGL's fragment shaders' UV coordinates run from (0,0)-(1,1),
// unlike vertex shaders' XY coordinates running from (-1,+1)-(+1,-1).
//
// We are drawing a rectangle PQRS, defined by two of its
// corners, onto the entire texture. The two quads may actually
// be equal, but in the general case, PQRS can be smaller.
//
// (0,0) +---------------+ (1,0)
// | P +-----+ Q |
// | | | |
// | S +-----+ R |
// (0,1) +---------------+ (1,1)
//
// The PQRS quad is always axis-aligned. First of all, convert
// from pixel space to texture space.
tw := float64(t.size.X)
th := float64(t.size.Y)
px := float64(sr.Min.X-0) / tw
py := float64(sr.Min.Y-0) / th
qx := float64(sr.Max.X-0) / tw
sy := float64(sr.Max.Y-0) / th
// Due to axis alignment, qy = py and sx = px.
//
// The simultaneous equations are:
// 0 + 0 + a02 = px
// 0 + 0 + a12 = py
// a00 + 0 + a02 = qx
// a10 + 0 + a12 = qy = py
// 0 + a01 + a02 = sx = px
// 0 + a11 + a12 = sy
writeAff3(w.glctx, w.s.texture.uvp, f64.Aff3{
qx - px, 0, px,
0, sy - py, py,
})
w.glctx.ActiveTexture(gl.TEXTURE0)
w.glctx.BindTexture(gl.TEXTURE_2D, t.id)
w.glctx.Uniform1i(w.s.texture.sample, 0)
w.glctx.BindBuffer(gl.ARRAY_BUFFER, w.s.texture.quad)
w.glctx.EnableVertexAttribArray(w.s.texture.pos)
w.glctx.VertexAttribPointer(w.s.texture.pos, 2, gl.FLOAT, false, 0, 0)
w.glctx.BindBuffer(gl.ARRAY_BUFFER, w.s.texture.quad)
w.glctx.EnableVertexAttribArray(w.s.texture.inUV)
w.glctx.VertexAttribPointer(w.s.texture.inUV, 2, gl.FLOAT, false, 0, 0)
w.glctx.DrawArrays(gl.TRIANGLE_STRIP, 0, 4)
w.glctx.DisableVertexAttribArray(w.s.texture.pos)
w.glctx.DisableVertexAttribArray(w.s.texture.inUV)
}
func (w *windowImpl) Copy(dp image.Point, src screen.Texture, sr image.Rectangle, op draw.Op, opts *screen.DrawOptions) {
drawer.Copy(w, dp, src, sr, op, opts)
}
func (w *windowImpl) Scale(dr image.Rectangle, src screen.Texture, sr image.Rectangle, op draw.Op, opts *screen.DrawOptions) {
drawer.Scale(w, dr, src, sr, op, opts)
}
func (w *windowImpl) mvp(tlx, tly, trx, try, blx, bly float64) f64.Aff3 {
w.szMu.Lock()
sz := w.sz
w.szMu.Unlock()
return calcMVP(sz.WidthPx, sz.HeightPx, tlx, tly, trx, try, blx, bly)
}
// calcMVP returns the Model View Projection matrix that maps the quadCoords
// unit square, (0, 0) to (1, 1), to a quad QV, such that QV in vertex shader
// space corresponds to the quad QP in pixel space, where QP is defined by
// three of its four corners - the arguments to this function. The three
// corners are nominally the top-left, top-right and bottom-left, but there is
// no constraint that e.g. tlx < trx.
//
// In pixel space, the window ranges from (0, 0) to (widthPx, heightPx). The
// Y-axis points downwards.
//
// In vertex shader space, the window ranges from (-1, +1) to (+1, -1), which
// is a 2-unit by 2-unit square. The Y-axis points upwards.
func calcMVP(widthPx, heightPx int, tlx, tly, trx, try, blx, bly float64) f64.Aff3 {
// Convert from pixel coords to vertex shader coords.
invHalfWidth := +2 / float64(widthPx)
invHalfHeight := -2 / float64(heightPx)
tlx = tlx*invHalfWidth - 1
tly = tly*invHalfHeight + 1
trx = trx*invHalfWidth - 1
try = try*invHalfHeight + 1
blx = blx*invHalfWidth - 1
bly = bly*invHalfHeight + 1
// The resultant affine matrix:
// - maps (0, 0) to (tlx, tly).
// - maps (1, 0) to (trx, try).
// - maps (0, 1) to (blx, bly).
return f64.Aff3{
trx - tlx, blx - tlx, tlx,
try - tly, bly - tly, tly,
}
}
func (w *windowImpl) Publish() screen.PublishResult {
// gl.Flush is a lightweight (on modern GL drivers) blocking call
// that ensures all GL functions pending in the gl package have
// been passed onto the GL driver before the app package attempts
// to swap the screen buffer.
//
// This enforces that the final receive (for this paint cycle) on
// gl.WorkAvailable happens before the send on publish.
w.glctxMu.Lock()
w.glctx.Flush()
w.glctxMu.Unlock()
w.publish <- struct{}{}
res := <-w.publishDone
select {
case w.drawDone <- struct{}{}:
default:
}
return res
}
|