1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x11driver
import (
"image"
"image/color"
"image/draw"
"math"
"sync"
"github.com/jezek/xgb/render"
"github.com/jezek/xgb/xproto"
"golang.org/x/exp/shiny/screen"
"golang.org/x/image/math/f64"
)
const textureDepth = 32
type textureImpl struct {
s *screenImpl
size image.Point
xm xproto.Pixmap
xp render.Picture
// renderMu is a mutex that enforces the atomicity of methods like
// Window.Draw that are conceptually one operation but are implemented by
// multiple X11/Render calls. X11/Render is a stateful API, so interleaving
// X11/Render calls from separate higher-level operations causes
// inconsistencies.
renderMu sync.Mutex
releasedMu sync.Mutex
released bool
}
func (t *textureImpl) degenerate() bool { return t.size.X == 0 || t.size.Y == 0 }
func (t *textureImpl) Size() image.Point { return t.size }
func (t *textureImpl) Bounds() image.Rectangle { return image.Rectangle{Max: t.size} }
func (t *textureImpl) Release() {
t.releasedMu.Lock()
released := t.released
t.released = true
t.releasedMu.Unlock()
if released || t.degenerate() {
return
}
render.FreePicture(t.s.xc, t.xp)
xproto.FreePixmap(t.s.xc, t.xm)
}
func (t *textureImpl) Upload(dp image.Point, src screen.Buffer, sr image.Rectangle) {
if t.degenerate() {
return
}
src.(bufferUploader).upload(xproto.Drawable(t.xm), t.s.gcontext32, textureDepth, dp, sr)
}
func (t *textureImpl) Fill(dr image.Rectangle, src color.Color, op draw.Op) {
if t.degenerate() {
return
}
fill(t.s.xc, t.xp, dr, src, op)
}
// f64ToFixed converts from float64 to X11/Render's 16.16 fixed point.
func f64ToFixed(x float64) render.Fixed {
return render.Fixed(x * 65536)
}
func inv(x *f64.Aff3) f64.Aff3 {
invDet := 1 / (x[0]*x[4] - x[1]*x[3])
return f64.Aff3{
+x[4] * invDet,
-x[1] * invDet,
(x[1]*x[5] - x[2]*x[4]) * invDet,
-x[3] * invDet,
+x[0] * invDet,
(x[2]*x[3] - x[0]*x[5]) * invDet,
}
}
func (t *textureImpl) draw(xp render.Picture, src2dst *f64.Aff3, sr image.Rectangle, op draw.Op, opts *screen.DrawOptions) {
sr = sr.Intersect(t.Bounds())
if sr.Empty() {
return
}
t.renderMu.Lock()
defer t.renderMu.Unlock()
// For simple copies and scales, the inverse matrix is trivial to compute,
// and we do not need the "Src becomes OutReverse plus Over" dance (see
// below). Thus, draw can be one render.SetPictureTransform call and then
// one render.Composite call, regardless of whether or not op is Src.
if src2dst[1] == 0 && src2dst[3] == 0 {
dstXMin := float64(sr.Min.X)*src2dst[0] + src2dst[2]
dstXMax := float64(sr.Max.X)*src2dst[0] + src2dst[2]
if dstXMin > dstXMax {
// TODO: check if this (and below) works when src2dst[0] < 0.
dstXMin, dstXMax = dstXMax, dstXMin
}
dXMin := int(math.Floor(dstXMin))
dXMax := int(math.Ceil(dstXMax))
dstYMin := float64(sr.Min.Y)*src2dst[4] + src2dst[5]
dstYMax := float64(sr.Max.Y)*src2dst[4] + src2dst[5]
if dstYMin > dstYMax {
// TODO: check if this (and below) works when src2dst[4] < 0.
dstYMin, dstYMax = dstYMax, dstYMin
}
dYMin := int(math.Floor(dstYMin))
dYMax := int(math.Ceil(dstYMax))
render.SetPictureTransform(t.s.xc, t.xp, render.Transform{
f64ToFixed(1 / src2dst[0]), 0, 0,
0, f64ToFixed(1 / src2dst[4]), 0,
0, 0, 1 << 16,
})
render.Composite(t.s.xc, renderOp(op), t.xp, 0, xp,
int16(sr.Min.X), int16(sr.Min.Y), // SrcX, SrcY,
0, 0, // MaskX, MaskY,
int16(dXMin), int16(dYMin), // DstX, DstY,
uint16(dXMax-dXMin), uint16(dYMax-dYMin), // Width, Height,
)
return
}
// The X11/Render transform matrix maps from destination pixels to source
// pixels, so we invert src2dst.
dst2src := inv(src2dst)
render.SetPictureTransform(t.s.xc, t.xp, render.Transform{
f64ToFixed(dst2src[0]), f64ToFixed(dst2src[1]), render.Fixed(sr.Min.X << 16),
f64ToFixed(dst2src[3]), f64ToFixed(dst2src[4]), render.Fixed(sr.Min.Y << 16),
0, 0, 1 << 16,
})
points := trifanPoints(src2dst, sr)
if op == draw.Src {
// render.TriFan visits every dst-space pixel in the axis-aligned
// bounding box (AABB) containing the transformation of the sr
// rectangle in src-space to a quad in dst-space.
//
// render.TriFan is like render.Composite, except that the AABB is
// defined implicitly by the transformed triangle vertices instead of
// being passed explicitly as arguments. It implies the minimal AABB.
//
// In any case, for arbitrary src2dst affine transformations, which
// include rotations, this means that a naive render.TriFan call will
// affect those pixels inside the AABB but outside the quad. For the
// draw.Src operator, this means that pixels in that AABB can be
// incorrectly set to zero.
//
// Instead, we implement the draw.Src operator as two render.TriFan
// calls. The first one (using the PictOpOutReverse operator and a
// fully opaque source) clears the dst-space quad but leaves pixels
// outside that quad (but inside the AABB) untouched. The second one
// (using the PictOpOver operator and the texture t as source) fills in
// the quad and again does not touch the pixels outside.
//
// What X11/Render calls PictOpOutReverse is also known as dst-out. See
// http://www.w3.org/TR/SVGCompositing/examples/compop-porterduff-examples.png
// for a visualization.
render.TriFan(t.s.xc, render.PictOpOutReverse, t.s.opaqueP, xp, 0, 0, 0, points[:])
}
render.TriFan(t.s.xc, render.PictOpOver, t.xp, xp, 0, 0, 0, points[:])
}
func trifanPoints(src2dst *f64.Aff3, sr image.Rectangle) [4]render.Pointfix {
minX := float64(sr.Min.X)
maxX := float64(sr.Max.X)
minY := float64(sr.Min.Y)
maxY := float64(sr.Max.Y)
return [4]render.Pointfix{{
f64ToFixed(src2dst[0]*minX + src2dst[1]*minY + src2dst[2]),
f64ToFixed(src2dst[3]*minX + src2dst[4]*minY + src2dst[5]),
}, {
f64ToFixed(src2dst[0]*maxX + src2dst[1]*minY + src2dst[2]),
f64ToFixed(src2dst[3]*maxX + src2dst[4]*minY + src2dst[5]),
}, {
f64ToFixed(src2dst[0]*maxX + src2dst[1]*maxY + src2dst[2]),
f64ToFixed(src2dst[3]*maxX + src2dst[4]*maxY + src2dst[5]),
}, {
f64ToFixed(src2dst[0]*minX + src2dst[1]*maxY + src2dst[2]),
f64ToFixed(src2dst[3]*minX + src2dst[4]*maxY + src2dst[5]),
}}
}
func renderOp(op draw.Op) byte {
if op == draw.Src {
return render.PictOpSrc
}
return render.PictOpOver
}
|