1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package text
// TODO: do we care about "\n" vs "\r" vs "\r\n"? We only recognize "\n" for
// now.
import (
"bytes"
"errors"
"io"
"strings"
"unicode/utf8"
"golang.org/x/image/math/fixed"
)
// Caret is a location in a Frame's text, and is the mechanism for adding and
// removing bytes of text. Conceptually, a Caret and a Frame's text is like an
// int c and a []byte t such that the text before and after that Caret is t[:c]
// and t[c:]. That byte-count location remains unchanged even when a Frame is
// re-sized and laid out into a new tree of Paragraphs, Lines and Boxes.
//
// A Frame can have multiple open Carets. For example, the beginning and end of
// a text selection can be represented by two Carets. Multiple Carets for the
// one Frame are not safe to use concurrently, but it is valid to interleave
// such operations sequentially. For example, if two Carets c0 and c1 for the
// one Frame are positioned at the 10th and 20th byte, and 4 bytes are written
// to c0, inserting what becomes the equivalent of text[10:14], then c0's
// position is updated to be 14 but c1's position is also updated to be 24.
type Caret struct {
f *Frame
// caretsIndex is the index of this Caret in the f.carets slice.
caretsIndex int
// seqNum is the Frame f's sequence number for which this Caret's cached p,
// l, b and k fields are valid. If f has been modified since then, those
// fields will have to be re-calculated based on the pos field (which is
// always valid).
//
// TODO: when re-calculating p, l, b and k, be more efficient than a linear
// scan from the start or end?
seqNum uint64
// p, l and b cache the index of the Caret's Paragraph, Line and Box. None
// of these values can be zero.
p, l, b int32
// k caches the Caret's position in the text, in Frame.text order. It is
// valid to index the Frame.text slice with k, analogous to the Box.i and
// Box.j fields. For a Caret c, letting bb := c.f.boxes[c.b], an invariant
// is that bb.i <= c.k && c.k <= bb.j if the cache is valid (i.e. the
// Caret's seqNum equals the Frame's seqNum).
k int32
// pos is the Caret's position in the text, in layout order. It is the "c"
// as in "t[:c]" in the doc comment for type Caret above. It is not valid
// to index the Frame.text slice with pos, since the Frame.text slice does
// not necessarily hold the textual content in layout order.
pos int32
tmp [utf8.UTFMax]byte
}
// Close closes the Caret.
func (c *Caret) Close() error {
i, j := c.caretsIndex, len(c.f.carets)-1
// Swap c with the last element of c.f.carets.
if i != j {
other := c.f.carets[j]
other.caretsIndex = i
c.f.carets[i] = other
}
c.f.carets[j] = nil
c.f.carets = c.f.carets[:j]
*c = Caret{}
return nil
}
type leanResult int
const (
// leanOK means that the lean changed the Caret's Box.
leanOK leanResult = iota
// leanFailedEOF means that the lean did not change the Caret's Box,
// because the Caret was already at the end / beginning of the Frame (when
// leaning forwards / backwards).
leanFailedEOF
// leanFailedNotEOB means that the lean did not change the Caret's Box,
// because the Caret was not placed at the end / beginning of the Box (when
// leaning forwards / backwards).
leanFailedNotEOB
)
// leanForwards moves the Caret from the right end of one Box to the left end
// of the next Box, crossing Lines and Paragraphs to find that next Box. It
// returns whether the Caret moved to a different Box.
//
// Diagramatically, suppose we have two adjacent boxes (shown by square
// brackets below), with the Caret (an integer location called Caret.pos in the
// Frame's text) in the middle of the "foo2bar3" word:
//
// [foo0 foo1 foo2]^[bar3 bar4 bar5]
//
// leanForwards moves Caret.k from fooBox.j to barBox.i, also updating the
// Caret's p, l and b. Caret.pos remains unchanged.
func (c *Caret) leanForwards() leanResult {
if c.k != c.f.boxes[c.b].j {
return leanFailedNotEOB
}
if nextB := c.f.boxes[c.b].next; nextB != 0 {
c.b = nextB
c.k = c.f.boxes[c.b].i
return leanOK
}
if nextL := c.f.lines[c.l].next; nextL != 0 {
c.l = nextL
c.b = c.f.lines[c.l].firstB
c.k = c.f.boxes[c.b].i
return leanOK
}
if nextP := c.f.paragraphs[c.p].next; nextP != 0 {
c.p = nextP
c.l = c.f.paragraphs[c.p].firstL
c.b = c.f.lines[c.l].firstB
c.k = c.f.boxes[c.b].i
return leanOK
}
return leanFailedEOF
}
// leanBackwards is like leanForwards but in the other direction.
func (c *Caret) leanBackwards() leanResult {
if c.k != c.f.boxes[c.b].i {
return leanFailedNotEOB
}
if prevB := c.f.boxes[c.b].prev; prevB != 0 {
c.b = prevB
c.k = c.f.boxes[c.b].j
return leanOK
}
if prevL := c.f.lines[c.l].prev; prevL != 0 {
c.l = prevL
c.b = c.f.lines[c.l].lastBox(c.f)
c.k = c.f.boxes[c.b].j
return leanOK
}
if prevP := c.f.paragraphs[c.p].prev; prevP != 0 {
c.p = prevP
c.l = c.f.paragraphs[c.p].lastLine(c.f)
c.b = c.f.lines[c.l].lastBox(c.f)
c.k = c.f.boxes[c.b].j
return leanOK
}
return leanFailedEOF
}
func (c *Caret) seekStart() {
c.p = c.f.firstP
c.l = c.f.paragraphs[c.p].firstL
c.b = c.f.lines[c.l].firstB
c.k = c.f.boxes[c.b].i
c.pos = 0
}
func (c *Caret) seekEnd() {
c.p = c.f.lastParagraph()
c.l = c.f.paragraphs[c.p].lastLine(c.f)
c.b = c.f.lines[c.l].lastBox(c.f)
c.k = c.f.boxes[c.b].j
c.pos = int32(c.f.len)
}
// calculatePLBK ensures that the Caret's cached p, l, b and k fields are
// valid.
func (c *Caret) calculatePLBK() {
if c.seqNum != c.f.seqNum {
c.seek(c.pos)
}
}
// Seek satisfies the io.Seeker interface.
func (c *Caret) Seek(offset int64, whence int) (int64, error) {
switch whence {
case SeekSet:
// No-op.
case SeekCur:
offset += int64(c.pos)
case SeekEnd:
offset += int64(c.f.len)
default:
return 0, errors.New("text: invalid seek whence")
}
if offset < 0 {
return 0, errors.New("text: negative seek position")
}
if offset > int64(c.f.len) {
offset = int64(c.f.len)
}
c.seek(int32(offset))
return offset, nil
}
func (c *Caret) seek(off int32) {
delta := off - c.pos
// If the new offset is closer to the start or the end than to the current
// c.pos, or if c's cached {p,l,b,k} values are invalid, move to the start
// or end first. In case of a tie, we prefer to seek forwards (i.e. set
// delta > 0).
if (delta < 0 && -delta >= off) || (c.seqNum != c.f.seqNum) {
c.seekStart()
delta = off - c.pos
}
if delta > 0 && delta > int32(c.f.len)-off {
c.seekEnd()
delta = off - c.pos
}
if delta != 0 {
// Seek forwards.
for delta > 0 {
if n := c.f.boxes[c.b].j - c.k; n > 0 {
if n > delta {
n = delta
}
c.pos += n
c.k += n
delta -= n
} else if c.leanForwards() != leanOK {
panic("text: invalid state")
}
}
// Seek backwards.
for delta < 0 {
if n := c.f.boxes[c.b].i - c.k; n < 0 {
if n < delta {
n = delta
}
c.pos += n
c.k += n
delta -= n
} else if c.leanBackwards() != leanOK {
panic("text: invalid state")
}
}
// A Caret can't be placed at the end of a Paragraph, unless it is the
// final Paragraph. A simple way to enforce this is to lean forwards.
c.leanForwards()
}
c.seqNum = c.f.seqNum
}
// Read satisfies the io.Reader interface by copying those bytes after the
// Caret and incrementing the Caret.
func (c *Caret) Read(buf []byte) (n int, err error) {
c.calculatePLBK()
for len(buf) > 0 {
if j := c.f.boxes[c.b].j; c.k < j {
nn := copy(buf, c.f.text[c.k:j])
buf = buf[nn:]
n += nn
c.pos += int32(nn)
c.k += int32(nn)
}
// A Caret can't be placed at the end of a Paragraph, unless it is the
// final Paragraph. A simple way to enforce this is to lean forwards.
if c.leanForwards() == leanFailedEOF {
break
}
}
if int(c.pos) == c.f.len {
err = io.EOF
}
return n, err
}
// ReadByte returns the next byte after the Caret and increments the Caret.
func (c *Caret) ReadByte() (x byte, err error) {
c.calculatePLBK()
for {
if j := c.f.boxes[c.b].j; c.k < j {
x = c.f.text[c.k]
c.pos++
c.k++
// A Caret can't be placed at the end of a Paragraph, unless it is
// the final Paragraph. A simple way to enforce this is to lean
// forwards.
c.leanForwards()
return x, nil
}
if c.leanForwards() == leanFailedEOF {
return 0, io.EOF
}
}
}
// ReadRune returns the next rune after the Caret and increments the Caret.
func (c *Caret) ReadRune() (r rune, size int, err error) {
c.calculatePLBK()
for {
if c.k < c.f.boxes[c.b].j {
r, size, c.b, c.k = c.f.readRune(c.b, c.k)
c.pos += int32(size)
// A Caret can't be placed at the end of a Paragraph, unless it is
// the final Paragraph. A simple way to enforce this is to lean
// forwards.
c.leanForwards()
return r, size, nil
}
if c.leanForwards() == leanFailedEOF {
return 0, 0, io.EOF
}
}
}
// WriteByte inserts x into the Frame's text at the Caret and increments the
// Caret.
func (c *Caret) WriteByte(x byte) error {
c.tmp[0] = x
return c.write(c.tmp[:1], "")
}
// WriteRune inserts r into the Frame's text at the Caret and increments the
// Caret.
func (c *Caret) WriteRune(r rune) (size int, err error) {
size = utf8.EncodeRune(c.tmp[:], r)
if err = c.write(c.tmp[:size], ""); err != nil {
return 0, err
}
return size, nil
}
// WriteString inserts s into the Frame's text at the Caret and increments the
// Caret.
func (c *Caret) WriteString(s string) (n int, err error) {
for len(s) > 0 {
i := 1 + strings.IndexByte(s, '\n')
if i == 0 {
i = len(s)
}
if err = c.write(nil, s[:i]); err != nil {
break
}
n += i
s = s[i:]
}
return n, err
}
// Write inserts s into the Frame's text at the Caret and increments the Caret.
func (c *Caret) Write(s []byte) (n int, err error) {
for len(s) > 0 {
i := 1 + bytes.IndexByte(s, '\n')
if i == 0 {
i = len(s)
}
if err = c.write(s[:i], ""); err != nil {
break
}
n += i
s = s[i:]
}
return n, err
}
// write inserts a []byte or string into the Frame's text at the Caret.
//
// Exactly one of s0 and s1 must be non-empty. That non-empty argument must
// contain at most one '\n' and if it does contain one, it must be the final
// byte.
func (c *Caret) write(s0 []byte, s1 string) error {
if m := maxLen - len(c.f.text); len(s0) > m || len(s1) > m {
return errors.New("text: insufficient space for writing")
}
// Ensure that the Caret is at the end of its Box, and that Box's text is
// at the end of the Frame's buffer.
c.calculatePLBK()
for {
bb, n := &c.f.boxes[c.b], int32(len(c.f.text))
if c.k == bb.j && c.k == n {
break
}
// If the Box's text is empty, move its empty i:j range to the
// equivalent empty range at the end of c.f.text.
if bb.i == bb.j {
bb.i = n
bb.j = n
for _, cc := range c.f.carets {
if cc.b == c.b {
cc.k = n
}
}
continue
}
// Make the Caret be at the end of its Box.
if c.k != bb.j {
c.splitBox(true)
continue
}
// Make a new empty Box and move the Caret to it.
c.splitBox(true)
c.leanForwards()
}
c.f.invalidateCaches()
c.f.paragraphs[c.p].invalidateCaches()
c.f.lines[c.l].invalidateCaches()
length, nl := len(s0), false
if length > 0 {
nl = s0[length-1] == '\n'
c.f.text = append(c.f.text, s0...)
} else {
length = len(s1)
nl = s1[length-1] == '\n'
c.f.text = append(c.f.text, s1...)
}
c.f.len += length
c.f.boxes[c.b].j += int32(length)
c.k += int32(length)
for _, cc := range c.f.carets {
if cc.pos > c.pos {
cc.pos += int32(length)
}
}
c.pos += int32(length)
oldL := c.l
if nl {
breakParagraph(c.f, c.p, c.l, c.b)
c.p = c.f.paragraphs[c.p].next
c.l = c.f.paragraphs[c.p].firstL
c.b = c.f.lines[c.l].firstB
c.k = c.f.boxes[c.b].i
}
// TODO: re-layout the new c.p paragraph, if we saw '\n'.
layout(c.f, oldL)
c.f.seqNum++
return nil
}
// breakParagraph breaks the Paragraph p into two Paragraphs, just after Box b
// in Line l in Paragraph p. b's text must end with a '\n'. The new Paragraph
// is inserted after p.
func breakParagraph(f *Frame, p, l, b int32) {
// Assert that the Box b's text ends with a '\n'.
if j := f.boxes[b].j; j == 0 || f.text[j-1] != '\n' {
panic("text: invalid state")
}
// Make a new, empty Paragraph after this Paragraph p.
newP, _ := f.newParagraph()
nextP := f.paragraphs[p].next
if nextP != 0 {
f.paragraphs[nextP].prev = newP
}
f.paragraphs[newP].next = nextP
f.paragraphs[newP].prev = p
f.paragraphs[p].next = newP
// Any Lines in this Paragraph after the break point's Line l move to the
// newP Paragraph.
if nextL := f.lines[l].next; nextL != 0 {
f.lines[l].next = 0
f.lines[nextL].prev = 0
f.paragraphs[newP].firstL = nextL
}
// Any Boxes in this Line after the break point's Box b move to a new Line
// at the start of the newP Paragraph.
if nextB := f.boxes[b].next; nextB != 0 {
f.boxes[b].next = 0
f.boxes[nextB].prev = 0
newL, _ := f.newLine()
f.lines[newL].firstB = nextB
if newPFirstL := f.paragraphs[newP].firstL; newPFirstL != 0 {
f.lines[newL].next = newPFirstL
f.lines[newPFirstL].prev = newL
}
f.paragraphs[newP].firstL = newL
}
// Make the newP Paragraph's first Line and first Box explicit, since
// Carets require an explicit p, l and b.
{
pp := &f.paragraphs[newP]
if pp.firstL == 0 {
pp.firstL, _ = f.newLine()
}
ll := &f.lines[pp.firstL]
if ll.firstB == 0 {
ll.firstB, _ = f.newBox()
}
}
// TODO: re-layout the newP paragraph.
}
// breakLine breaks the Line l at text index k in Box b. The b-and-k index must
// not be at the start or end of the Line. Text to the right of b-and-k in the
// Line l will be moved to the start of the next Line in the Paragraph, with
// that next Line being created if it didn't already exist.
func breakLine(f *Frame, l, b, k int32) {
// Split this Box into two if necessary, so that k equals a Box's j end.
bb := &f.boxes[b]
if k != bb.j {
if k == bb.i {
panic("TODO: degenerate split left, possibly adjusting the Line's firstB??")
}
newB, realloc := f.newBox()
if realloc {
bb = &f.boxes[b]
}
nextB := bb.next
if nextB != 0 {
f.boxes[nextB].prev = newB
}
f.boxes[newB].next = nextB
f.boxes[newB].prev = b
f.boxes[newB].i = k
f.boxes[newB].j = bb.j
bb.next = newB
bb.j = k
}
// Assert that the break point isn't already at the start or end of the Line.
if bb.next == 0 || (bb.prev == 0 && k == bb.i) {
panic("text: invalid state")
}
// Insert a line after this one, if one doesn't already exist.
ll := &f.lines[l]
if ll.next == 0 {
newL, realloc := f.newLine()
if realloc {
ll = &f.lines[l]
}
f.lines[newL].prev = l
ll.next = newL
}
// Move the remaining boxes to the next line.
nextB, nextL := bb.next, ll.next
bb.next = 0
f.boxes[nextB].prev = 0
fb := f.lines[nextL].firstB
f.lines[nextL].firstB = nextB
// If the next Line already contained Boxes, append them to the end of the
// nextB chain, and join the two newly linked Boxes if possible.
if fb != 0 {
lb := f.lines[nextL].lastBox(f)
lbb := &f.boxes[lb]
fbb := &f.boxes[fb]
lbb.next = fb
fbb.prev = lb
f.joinBoxes(lb, fb, lbb, fbb)
}
}
// layout inserts a soft return in the Line l if its text measures longer than
// f.maxWidth and a suitable line break point is found. This may spill text
// onto the next line, which will also be laid out, and so on recursively.
func layout(f *Frame, l int32) {
if f.maxWidth <= 0 || f.face == nil {
return
}
f.seqNum++
for ; l != 0; l = f.lines[l].next {
var (
firstB = f.lines[l].firstB
reader = f.lineReader(firstB, f.boxes[firstB].i)
breakPoint bAndK
prevR rune
prevRValid bool
advance fixed.Int26_6
)
for {
r, _, err := reader.ReadRune()
if err != nil || r == '\n' {
return
}
if prevRValid {
advance += f.face.Kern(prevR, r)
}
// TODO: match all whitespace, not just ' '?
if r == ' ' {
breakPoint = reader.bAndK()
}
a, ok := f.face.GlyphAdvance(r)
if !ok {
panic("TODO: is falling back on the U+FFFD glyph the responsibility of the caller or the Face?")
}
advance += a
if r != ' ' && advance > f.maxWidth && breakPoint.b != 0 {
breakLine(f, l, breakPoint.b, breakPoint.k)
break
}
prevR, prevRValid = r, true
}
}
}
// Delete deletes nBytes bytes in the specified direction from the Caret's
// location. It returns the number of bytes deleted, which can be fewer than
// that requested if it hits the beginning or end of the Frame.
func (c *Caret) Delete(dir Direction, nBytes int) (dBytes int) {
if nBytes <= 0 {
return 0
}
// Convert a backwards delete of n bytes from position p to a forwards
// delete of n bytes from position p-n.
//
// In general, it's easier to delete forwards than backwards. For example,
// when crossing paragraph boundaries, it's easier to find the first line
// of the next paragraph than the last line of the previous paragraph.
if dir == Backwards {
newPos := int(c.pos) - nBytes
if newPos < 0 {
newPos = 0
nBytes = int(c.pos)
if nBytes == 0 {
return 0
}
}
c.seek(int32(newPos))
}
if int(c.pos) == c.f.len {
return 0
}
c.calculatePLBK()
c.leanForwards()
if c.f.boxes[c.b].i != c.k && c.splitBox(false) {
c.leanForwards()
}
for nBytes > 0 && int(c.pos) != c.f.len {
bb := &c.f.boxes[c.b]
n := bb.j - bb.i
newLine := n != 0 && c.f.text[bb.j-1] == '\n'
if int(n) > nBytes {
n = int32(nBytes)
}
bb.i += n
c.k += n
dBytes += int(n)
nBytes -= int(n)
c.f.len -= int(n)
if bb.i != bb.j {
break
}
if newLine {
c.joinNextParagraph()
}
c.leanForwards()
}
// The mergeIntoOneLine will shake out any empty Boxes.
l := c.f.mergeIntoOneLine(c.p)
layout(c.f, l)
c.f.invalidateCaches()
// Compact c.f.text if it's large enough and the fraction of deleted text
// is above some threshold. The actual threshold value (25%) is arbitrary.
// A lower value means more frequent compactions, so less memory on average
// but more CPU. A higher value means the opposite.
if len(c.f.text) > 4096 && len(c.f.text)/4 < c.f.deletedLen() {
c.f.compactText()
}
c.f.seqNum++
for _, cc := range c.f.carets {
if cc == c {
continue
}
switch relPos := cc.pos - c.pos; {
case relPos <= 0:
// No-op.
case relPos <= int32(dBytes):
cc.pos = c.pos
default:
cc.pos -= int32(dBytes)
}
}
return dBytes
}
// DeleteRunes deletes nRunes runes in the specified direction from the Caret's
// location. It returns the number of runes and bytes deleted, which can be
// fewer than that requested if it hits the beginning or end of the Frame.
func (c *Caret) DeleteRunes(dir Direction, nRunes int) (dRunes, dBytes int) {
// Save the current Caret position, move the Caret by nRunes runes to
// calculate how many bytes to delete, restore that saved Caret position,
// then delete that many bytes.
c.calculatePLBK()
savedC := *c
if dir == Forwards {
for dRunes < nRunes {
var size int
_, size, c.b, c.k = c.f.readRune(c.b, c.k)
if size != 0 {
dRunes++
dBytes += size
} else if c.leanForwards() != leanOK {
break
}
}
} else {
for dRunes < nRunes {
var size int
_, size, c.b, c.k = c.f.readLastRune(c.b, c.k)
if size != 0 {
dRunes++
dBytes += size
} else if c.leanBackwards() != leanOK {
break
}
}
}
*c = savedC
if dBytes != c.Delete(dir, dBytes) {
panic("text: invalid state")
}
return dRunes, dBytes
}
// joinNextParagraph joins c's current and next Paragraph. That next Paragraph
// must exist, and c must be at the last Line of its current Paragraph.
func (c *Caret) joinNextParagraph() {
pp0 := &c.f.paragraphs[c.p]
ll0 := &c.f.lines[c.l]
if pp0.next == 0 || ll0.next != 0 {
panic("text: invalid state")
}
pp1 := &c.f.paragraphs[pp0.next]
l1 := pp1.firstL
ll0.next = l1
c.f.lines[l1].prev = c.l
toFree := pp0.next
pp0.next = pp1.next
if pp0.next != 0 {
c.f.paragraphs[pp0.next].prev = c.p
}
c.f.freeParagraph(toFree)
}
// splitBox splits the Caret's Box into two, at the Caret's location. Unless
// force is set, it does nothing if the Caret is at either edge of its Box. It
// returns whether the Box was split. If so, the new Box is created after, not
// before, the Caret's current Box.
func (c *Caret) splitBox(force bool) bool {
bb := &c.f.boxes[c.b]
if !force && (c.k == bb.i || c.k == bb.j) {
return false
}
newB, realloc := c.f.newBox()
if realloc {
bb = &c.f.boxes[c.b]
}
nextB := bb.next
if nextB != 0 {
c.f.boxes[nextB].prev = newB
}
c.f.boxes[newB] = Box{
next: nextB,
prev: c.b,
i: c.k,
j: bb.j,
}
bb.next = newB
bb.j = c.k
return true
}
|