1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
|
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package flex provides a container widget that lays out its children
// following the CSS flexbox algorithm.
//
// As the shiny widget model does not provide all of the layout features
// of CSS, the flex package diverges in several ways. There is no item
// inline-axis, no item margins or padding to be accounted for, and the
// container size provided by the outer widget is taken as gospel and
// never expanded.
package flex
import (
"fmt"
"image"
"math"
"golang.org/x/exp/shiny/widget/node"
"golang.org/x/exp/shiny/widget/theme"
)
// Direction is the direction in which flex items are laid out.
//
// https://www.w3.org/TR/css-flexbox-1/#flex-direction-property
type Direction uint8
const (
Row Direction = iota
RowReverse
Column
ColumnReverse
)
// FlexWrap controls whether the container is single- or multi-line,
// and the direction in which the lines are laid out.
//
// https://www.w3.org/TR/css-flexbox-1/#flex-wrap-property
type FlexWrap uint8
const (
NoWrap FlexWrap = iota
Wrap
WrapReverse
)
// Justify aligns items along the main axis.
//
// https://www.w3.org/TR/css-flexbox-1/#justify-content-property
type Justify uint8
const (
JustifyStart Justify = iota // pack to start of line
JustifyEnd // pack to end of line
JustifyCenter // pack to center of line
JustifySpaceBetween // even spacing
JustifySpaceAround // even spacing, half-size on each end
)
// AlignItem aligns items along the cross axis.
//
// It is the 'align-items' property when applied to a Flex container,
// and the 'align-self' property when applied to an item in LayoutData.
//
// https://www.w3.org/TR/css-flexbox-1/#align-items-property
// https://www.w3.org/TR/css-flexbox-1/#propdef-align-self
type AlignItem uint8
const (
AlignItemAuto AlignItem = iota
AlignItemStart
AlignItemEnd
AlignItemCenter
AlignItemBaseline // TODO requires introducing inline-axis concept
AlignItemStretch
)
// AlignContent is the 'align-content' property.
// It aligns container lines when there is extra space on the cross-axis.
//
// https://www.w3.org/TR/css-flexbox-1/#align-content-property
type AlignContent uint8
const (
AlignContentStretch AlignContent = iota
AlignContentStart
AlignContentEnd
AlignContentCenter
AlignContentSpaceBetween
AlignContentSpaceAround
)
// Basis sets the base size of a flex item.
//
// A default basis of Auto means the flex container uses the
// MeasuredSize of an item. Otherwise a Definite Basis will
// override the MeasuredSize with BasisPx.
//
// TODO: do we (or will we )have a useful notion of Content in the
// widget layout model that is separate from MeasuredSize? If not,
// we could consider completely removing this concept from this
// flex implementation.
type Basis uint8
const (
Auto Basis = iota
Definite
)
// Flex is a container widget that lays out its children following the
// CSS flexbox algorithm.
type Flex struct {
node.ContainerEmbed
Direction Direction
Wrap FlexWrap
Justify Justify
AlignItems AlignItem
AlignContent AlignContent
}
// NewFlex returns a new Flex widget containing the given children.
func NewFlex(children ...node.Node) *Flex {
w := new(Flex)
w.Wrapper = w
for _, c := range children {
w.Insert(c, nil)
}
return w
}
func (w *Flex) Measure(t *theme.Theme, widthHint, heightHint int) {
// As Measure is a bottom-up calculation of natural size, we have no
// hint yet as to how we should flex. So we ignore Wrap, Justify,
// AlignItem, AlignContent.
for c := w.FirstChild; c != nil; c = c.NextSibling {
// TODO: pass down width/height hints?
c.Wrapper.Measure(t, node.NoHint, node.NoHint)
if d, ok := c.LayoutData.(LayoutData); ok {
_ = d
// TODO Measure
}
}
}
func (w *Flex) Layout(t *theme.Theme) {
var children []element
for c := w.FirstChild; c != nil; c = c.NextSibling {
children = append(children, element{
flexBaseSize: float64(w.flexBaseSize(c)),
n: c,
})
}
containerMainSize := float64(w.mainSize(w.Rect.Size()))
containerCrossSize := float64(w.crossSize(w.Rect.Size()))
// §9.3.5 collect children into flex lines
var lines []flexLine
if w.Wrap == NoWrap {
line := flexLine{child: make([]*element, len(children))}
for i := range children {
child := &children[i]
line.child[i] = child
line.mainSize += child.flexBaseSize
}
lines = []flexLine{line}
} else {
var line flexLine
for i := range children {
child := &children[i]
hypotheticalMainSize := w.clampSize(child.flexBaseSize, child.n)
if line.mainSize > 0 && line.mainSize+hypotheticalMainSize > containerMainSize {
lines = append(lines, line)
line = flexLine{}
}
line.child = append(line.child, child)
line.mainSize += hypotheticalMainSize
if d, ok := child.n.LayoutData.(LayoutData); ok && d.BreakAfter {
lines = append(lines, line)
line = flexLine{}
}
}
if len(line.child) > 0 || len(children) == 0 {
lines = append(lines, line)
}
if w.Wrap == WrapReverse {
for i := 0; i < len(lines)/2; i++ {
lines[i], lines[len(lines)-i-1] = lines[len(lines)-i-1], lines[i]
}
}
}
// §9.3.6 resolve flexible lengths (details in section §9.7)
for l := range lines {
line := &lines[l]
grow := line.mainSize < containerMainSize // §9.7.1
// §9.7.2 freeze inflexible children.
for _, child := range line.child {
mainSize := float64(w.mainSize(child.n.MeasuredSize))
hypotheticalMainSize := w.clampSize(mainSize, child.n)
if grow {
if growFactor(child.n) == 0 || float64(w.flexBaseSize(child.n)) > hypotheticalMainSize {
child.frozen = true
child.mainSize = hypotheticalMainSize
}
} else {
if shrinkFactor(child.n) == 0 || float64(w.flexBaseSize(child.n)) < hypotheticalMainSize {
child.frozen = true
child.mainSize = hypotheticalMainSize
}
}
}
// §9.7.3 calculate initial free space
initFreeSpace := float64(w.mainSize(w.Rect.Size()))
for _, child := range line.child {
if child.frozen {
initFreeSpace -= child.mainSize
} else {
initFreeSpace -= float64(w.flexBaseSize(child.n))
}
}
// §9.7.4 flex loop
for {
// Check for flexible items.
allFrozen := true
for _, child := range line.child {
if !child.frozen {
allFrozen = false
break
}
}
if allFrozen {
break
}
// Calculate remaining free space.
remFreeSpace := float64(w.mainSize(w.Rect.Size()))
unfrozenFlexFactor := 0.0
for _, child := range line.child {
if child.frozen {
remFreeSpace -= child.mainSize
} else {
remFreeSpace -= float64(w.flexBaseSize(child.n))
if grow {
unfrozenFlexFactor += growFactor(child.n)
} else {
unfrozenFlexFactor += shrinkFactor(child.n)
}
}
}
if unfrozenFlexFactor < 1 {
p := initFreeSpace * unfrozenFlexFactor
if math.Abs(p) < math.Abs(remFreeSpace) {
remFreeSpace = p
}
}
// Distribute free space proportional to flex factors.
if grow {
for _, child := range line.child {
if child.frozen {
continue
}
r := growFactor(child.n) / unfrozenFlexFactor
child.mainSize = float64(w.flexBaseSize(child.n)) + r*remFreeSpace
}
} else {
sumScaledShrinkFactor := 0.0
for _, child := range line.child {
if child.frozen {
continue
}
scaledShrinkFactor := float64(w.flexBaseSize(child.n)) * shrinkFactor(child.n)
sumScaledShrinkFactor += scaledShrinkFactor
}
for _, child := range line.child {
if child.frozen {
continue
}
scaledShrinkFactor := float64(w.flexBaseSize(child.n)) * shrinkFactor(child.n)
r := float64(scaledShrinkFactor) / sumScaledShrinkFactor
child.mainSize = float64(w.flexBaseSize(child.n)) - r*math.Abs(float64(remFreeSpace))
}
}
// Fix min/max violations.
sumClampDiff := 0.0
for _, child := range line.child {
// TODO: we work in whole pixels but flex calculations are done in
// fractional pixels. Take this oppertunity to clamp us to whole
// pixels and make sure we sum correctly.
if child.frozen {
continue
}
child.unclamped = child.mainSize
child.mainSize = w.clampSize(child.mainSize, child.n)
sumClampDiff += child.mainSize - child.unclamped
}
// Freeze over-flexed items.
switch {
case sumClampDiff == 0:
for _, child := range line.child {
child.frozen = true
}
case sumClampDiff > 0:
for _, child := range line.child {
if child.mainSize > child.unclamped {
child.frozen = true
}
}
case sumClampDiff < 0:
for _, child := range line.child {
if child.mainSize < child.unclamped {
child.frozen = true
}
}
}
}
// §9.7.5 set main size
// At this point, child.mainSize is right.
}
// §9.4 determine cross size
// §9.4.7 calculate hypothetical cross size of each element
for l := range lines {
for _, child := range lines[l].child {
child.crossSize = float64(w.crossSize(child.n.MeasuredSize))
if child.mainSize < float64(w.mainSize(child.n.MeasuredSize)) {
if r, ok := aspectRatio(child.n); ok {
child.crossSize = child.mainSize / r
}
}
if d, ok := child.n.LayoutData.(LayoutData); ok {
minSize := float64(w.crossSize(d.MinSize))
if minSize > child.crossSize {
child.crossSize = minSize
} else if d.MaxSize != nil {
maxSize := float64(w.crossSize(*d.MaxSize))
if child.crossSize > maxSize {
child.crossSize = maxSize
}
}
}
}
}
if len(lines) == 1 {
// §9.4.8 single line
switch w.Direction {
case Row, RowReverse:
lines[0].crossSize = float64(w.Rect.Size().Y)
case Column, ColumnReverse:
lines[0].crossSize = float64(w.Rect.Size().X)
}
} else {
// §9.4.8 multi-line
for l := range lines {
line := &lines[l]
// TODO §9.4.8.1, no concept of inline-axis yet
max := 0.0
for _, child := range line.child {
if child.crossSize > max {
max = child.crossSize
}
}
line.crossSize = max
}
}
off := 0.0
for l := range lines {
line := &lines[l]
line.crossOffset = off
off += line.crossSize
}
// §9.4.9 align-content: stretch
remCrossSize := containerCrossSize - off
if w.AlignContent == AlignContentStretch && remCrossSize > 0 {
add := remCrossSize / float64(len(lines))
for l := range lines {
line := &lines[l]
line.crossOffset += float64(l) * add
line.crossSize += add
}
}
// Note: no equiv. to §9.4.10 "visibility: collapse".
// §9.4.11 align-item: stretch
for l := range lines {
line := &lines[l]
for _, child := range line.child {
align := w.alignItem(child.n)
if align == AlignItemStretch && child.crossSize < line.crossSize {
child.crossSize = line.crossSize
}
}
}
// §9.5 main axis alignment
for l := range lines {
line := &lines[l]
total := 0.0
for _, child := range line.child {
total += child.mainSize
}
remFree := containerMainSize - total
off, spacing := 0.0, 0.0
switch w.Justify {
case JustifyStart:
case JustifyEnd:
off = remFree
case JustifyCenter:
off = remFree / 2
case JustifySpaceBetween:
spacing = remFree / float64(len(line.child)-1)
case JustifySpaceAround:
spacing = remFree / float64(len(line.child))
off = spacing / 2
}
for _, child := range line.child {
child.mainOffset = off
off += spacing + child.mainSize
}
}
// §9.6 cross axis alignment
// §9.6.13 no 'auto' margins
// §9.6.14 align items inside line, 'align-self'.
for l := range lines {
line := &lines[l]
for _, child := range line.child {
child.crossOffset = line.crossOffset
if child.crossSize == line.crossSize {
continue
}
diff := line.crossSize - child.crossSize
switch w.alignItem(child.n) {
case AlignItemStart:
// already laid out correctly
case AlignItemEnd:
child.crossOffset = line.crossOffset + diff
case AlignItemCenter:
child.crossOffset = line.crossOffset + diff/2
case AlignItemBaseline:
// TODO requires introducing inline-axis concept
case AlignItemStretch:
// handled earlier, so child.crossSize == line.crossSize
}
}
}
// §9.6.15 determine container cross size used
crossSize := lines[len(lines)-1].crossOffset + lines[len(lines)-1].crossSize
remFree := containerCrossSize - crossSize
// §9.6.16 align flex lines, 'align-content'.
if remFree > 0 {
spacing, off := 0.0, 0.0
switch w.AlignContent {
case AlignContentStart:
// already laid out correctly
case AlignContentEnd:
off = remFree
case AlignContentCenter:
off = remFree / 2
case AlignContentSpaceBetween:
spacing = remFree / float64(len(lines)-1)
case AlignContentSpaceAround:
spacing = remFree / float64(len(lines))
off = spacing / 2
case AlignContentStretch:
// handled earlier, why is remFree > 0?
}
if w.AlignContent != AlignContentStart && w.AlignContent != AlignContentStretch {
for l := range lines {
line := &lines[l]
line.crossOffset += off
for _, child := range line.child {
child.crossOffset += off
}
off += spacing
}
}
}
switch w.Direction {
case RowReverse, ColumnReverse:
// Invert main-start and main-end.
for l := range lines {
line := &lines[l]
for _, child := range line.child {
child.mainOffset = containerMainSize - child.mainOffset - child.mainSize
}
}
}
// Layout complete. Generate child Rect values.
for l := range lines {
line := &lines[l]
for _, child := range line.child {
switch w.Direction {
case Row, RowReverse:
child.n.Rect.Min.X = round(child.mainOffset)
child.n.Rect.Max.X = round(child.mainOffset + child.mainSize)
child.n.Rect.Min.Y = round(child.crossOffset)
child.n.Rect.Max.Y = round(child.crossOffset + child.crossSize)
case Column, ColumnReverse:
child.n.Rect.Min.Y = round(child.mainOffset)
child.n.Rect.Max.Y = round(child.mainOffset + child.mainSize)
child.n.Rect.Min.X = round(child.crossOffset)
child.n.Rect.Max.X = round(child.crossOffset + child.crossSize)
default:
panic(fmt.Sprint("flex: bad direction ", w.Direction))
}
child.n.Wrapper.Layout(t)
}
}
}
func round(f float64) int {
return int(math.Floor(f + .5))
}
type element struct {
n *node.Embed
flexBaseSize float64
frozen bool
unclamped float64
mainSize float64
mainOffset float64
crossSize float64
crossOffset float64
}
type flexLine struct {
mainSize float64
crossSize float64
crossOffset float64
child []*element
}
func (w *Flex) alignItem(n *node.Embed) AlignItem {
align := w.AlignItems
if d, ok := n.LayoutData.(LayoutData); ok {
align = d.Align
}
return align
}
// flexBaseSize calculates flex base size as per §9.2.3
func (w *Flex) flexBaseSize(n *node.Embed) int {
basis := Auto
if d, ok := n.LayoutData.(LayoutData); ok {
basis = d.Basis
}
// TODO Content §9.2.3.B, C, D
switch basis {
case Definite: // A
return n.LayoutData.(LayoutData).BasisPx
case Auto: // E
return w.mainSize(n.MeasuredSize)
default:
panic(fmt.Sprintf("flex: unknown flex-basis %v", basis))
}
}
func growFactor(n *node.Embed) float64 {
if d, ok := n.LayoutData.(LayoutData); ok {
return d.Grow
}
return 0
}
func shrinkFactor(n *node.Embed) float64 {
if d, ok := n.LayoutData.(LayoutData); ok && d.Shrink != nil {
return *d.Shrink
}
return 1
}
func aspectRatio(n *node.Embed) (ratio float64, ok bool) {
// TODO: source a formal description of "intrinsic aspect ratio"
d, ok := n.LayoutData.(LayoutData)
if ok && d.MinSize.X != 0 && d.MinSize.Y != 0 {
return float64(d.MinSize.X) / float64(d.MinSize.Y), true
}
return 0, false
}
func (w *Flex) clampSize(size float64, n *node.Embed) float64 {
if d, ok := n.LayoutData.(LayoutData); ok {
minSize := float64(w.mainSize(d.MinSize))
if minSize > size {
size = minSize
} else if d.MaxSize != nil {
maxSize := float64(w.mainSize(*d.MaxSize))
if size > maxSize {
size = maxSize
}
}
}
if size < 0 {
return 0
}
return size
}
func (w *Flex) mainSize(p image.Point) int {
switch w.Direction {
case Row, RowReverse:
return p.X
case Column, ColumnReverse:
return p.Y
default:
panic(fmt.Sprint("flex: bad direction ", w.Direction))
}
}
func (w *Flex) crossSize(p image.Point) int {
switch w.Direction {
case Row, RowReverse:
return p.Y
case Column, ColumnReverse:
return p.X
default:
panic(fmt.Sprint("flex: bad direction ", w.Direction))
}
}
// LayoutData is the node LayoutData type for a Flex's children.
type LayoutData struct {
MinSize image.Point // TODO use unit.Value
MaxSize *image.Point // TODO use unit.Value
// Grow determines how much a node will grow relative to its siblings.
Grow float64
// Shrink is the flex shrink factor which determines how much a node
// will shrink relative to its siblings. If nil, a default shrink
// factor of 1 is used.
Shrink *float64
// Basis determines the initial size of the node in the direction
// of the flex container (the main axis).
//
// If set to Definite, the value stored in BasisPx is used.
Basis Basis
BasisPx int // TODO use unit package?
Align AlignItem
// BreakAfter forces the next node onto the next flex line.
BreakAfter bool
}
|