File: sort.go

package info (click to toggle)
golang-golang-x-exp 0.0~git20230522.2e198f4-1~bpo12%2B1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-backports
  • size: 6,404 kB
  • sloc: ansic: 1,900; objc: 276; sh: 272; asm: 48; makefile: 26
file content (128 lines) | stat: -rw-r--r-- 4,174 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package slices

import (
	"math/bits"

	"golang.org/x/exp/constraints"
)

// Sort sorts a slice of any ordered type in ascending order.
// Sort may fail to sort correctly when sorting slices of floating-point
// numbers containing Not-a-number (NaN) values.
// Use slices.SortFunc(x, func(a, b float64) bool {return a < b || (math.IsNaN(a) && !math.IsNaN(b))})
// instead if the input may contain NaNs.
func Sort[E constraints.Ordered](x []E) {
	n := len(x)
	pdqsortOrdered(x, 0, n, bits.Len(uint(n)))
}

// SortFunc sorts the slice x in ascending order as determined by the less function.
// This sort is not guaranteed to be stable.
//
// SortFunc requires that less is a strict weak ordering.
// See https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings.
func SortFunc[E any](x []E, less func(a, b E) bool) {
	n := len(x)
	pdqsortLessFunc(x, 0, n, bits.Len(uint(n)), less)
}

// SortStableFunc sorts the slice x while keeping the original order of equal
// elements, using less to compare elements.
func SortStableFunc[E any](x []E, less func(a, b E) bool) {
	stableLessFunc(x, len(x), less)
}

// IsSorted reports whether x is sorted in ascending order.
func IsSorted[E constraints.Ordered](x []E) bool {
	for i := len(x) - 1; i > 0; i-- {
		if x[i] < x[i-1] {
			return false
		}
	}
	return true
}

// IsSortedFunc reports whether x is sorted in ascending order, with less as the
// comparison function.
func IsSortedFunc[E any](x []E, less func(a, b E) bool) bool {
	for i := len(x) - 1; i > 0; i-- {
		if less(x[i], x[i-1]) {
			return false
		}
	}
	return true
}

// BinarySearch searches for target in a sorted slice and returns the position
// where target is found, or the position where target would appear in the
// sort order; it also returns a bool saying whether the target is really found
// in the slice. The slice must be sorted in increasing order.
func BinarySearch[E constraints.Ordered](x []E, target E) (int, bool) {
	// Inlining is faster than calling BinarySearchFunc with a lambda.
	n := len(x)
	// Define x[-1] < target and x[n] >= target.
	// Invariant: x[i-1] < target, x[j] >= target.
	i, j := 0, n
	for i < j {
		h := int(uint(i+j) >> 1) // avoid overflow when computing h
		// i ≤ h < j
		if x[h] < target {
			i = h + 1 // preserves x[i-1] < target
		} else {
			j = h // preserves x[j] >= target
		}
	}
	// i == j, x[i-1] < target, and x[j] (= x[i]) >= target  =>  answer is i.
	return i, i < n && x[i] == target
}

// BinarySearchFunc works like BinarySearch, but uses a custom comparison
// function. The slice must be sorted in increasing order, where "increasing"
// is defined by cmp. cmp should return 0 if the slice element matches
// the target, a negative number if the slice element precedes the target,
// or a positive number if the slice element follows the target.
// cmp must implement the same ordering as the slice, such that if
// cmp(a, t) < 0 and cmp(b, t) >= 0, then a must precede b in the slice.
func BinarySearchFunc[E, T any](x []E, target T, cmp func(E, T) int) (int, bool) {
	n := len(x)
	// Define cmp(x[-1], target) < 0 and cmp(x[n], target) >= 0 .
	// Invariant: cmp(x[i - 1], target) < 0, cmp(x[j], target) >= 0.
	i, j := 0, n
	for i < j {
		h := int(uint(i+j) >> 1) // avoid overflow when computing h
		// i ≤ h < j
		if cmp(x[h], target) < 0 {
			i = h + 1 // preserves cmp(x[i - 1], target) < 0
		} else {
			j = h // preserves cmp(x[j], target) >= 0
		}
	}
	// i == j, cmp(x[i-1], target) < 0, and cmp(x[j], target) (= cmp(x[i], target)) >= 0  =>  answer is i.
	return i, i < n && cmp(x[i], target) == 0
}

type sortedHint int // hint for pdqsort when choosing the pivot

const (
	unknownHint sortedHint = iota
	increasingHint
	decreasingHint
)

// xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
type xorshift uint64

func (r *xorshift) Next() uint64 {
	*r ^= *r << 13
	*r ^= *r >> 17
	*r ^= *r << 5
	return uint64(*r)
}

func nextPowerOfTwo(length int) uint {
	return 1 << bits.Len(uint(length))
}