1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tlog
import (
"fmt"
"strconv"
"strings"
)
// A Tile is a description of a transparency log tile.
// A tile of height H at level L offset N lists W consecutive hashes
// at level H*L of the tree starting at offset N*(2**H).
// A complete tile lists 2**H hashes; a partial tile lists fewer.
// Note that a tile represents the entire subtree of height H
// with those hashes as the leaves. The levels above H*L
// can be reconstructed by hashing the leaves.
//
// Each Tile can be encoded as a “tile coordinate path”
// of the form tile/H/L/NNN[.p/W].
// The .p/W suffix is present only for partial tiles, meaning W < 2**H.
// The NNN element is an encoding of N into 3-digit path elements.
// All but the last path element begins with an "x".
// For example,
// Tile{H: 3, L: 4, N: 1234067, W: 1}'s path
// is tile/3/4/x001/x234/067.p/1, and
// Tile{H: 3, L: 4, N: 1234067, W: 8}'s path
// is tile/3/4/x001/x234/067.
// See Tile's Path method and the ParseTilePath function.
//
// The special level L=-1 holds raw record data instead of hashes.
// In this case, the level encodes into a tile path as the path element
// "data" instead of "-1".
type Tile struct {
H int // height of tile (1 ≤ H ≤ 30)
L int // level in tiling (-1 ≤ L ≤ 63)
N int64 // number within level (0 ≤ N, unbounded)
W int // width of tile (1 ≤ W ≤ 2**H; 2**H is complete tile)
}
// TileForIndex returns the tile of height h ≥ 1
// and least width storing the given hash storage index.
func TileForIndex(h int, index int64) Tile {
if h < 1 {
panic("TileForIndex: invalid height")
}
t, _, _ := tileForIndex(h, index)
return t
}
// tileForIndex returns the tile of height h ≥ 1
// storing the given hash index, which can be
// reconstructed using tileHash(data[start:end]).
func tileForIndex(h int, index int64) (t Tile, start, end int) {
level, n := SplitStoredHashIndex(index)
t.H = h
t.L = level / h
level -= t.L * h // now level within tile
t.N = n << uint(level) >> uint(t.H)
n -= t.N << uint(t.H) >> uint(level) // now n within tile at level
t.W = int((n + 1) << uint(level))
return t, int(n<<uint(level)) * HashSize, int((n+1)<<uint(level)) * HashSize
}
// HashFromTile returns the hash at the given storage index,
// provided that t == TileForIndex(t.H, index) or a wider version,
// and data is t's tile data (of length at least t.W*HashSize).
func HashFromTile(t Tile, data []byte, index int64) (Hash, error) {
if t.H < 1 || t.H > 30 || t.L < 0 || t.L >= 64 || t.W < 1 || t.W > 1<<uint(t.H) {
return Hash{}, fmt.Errorf("invalid tile %v", t.Path())
}
if len(data) < t.W*HashSize {
return Hash{}, fmt.Errorf("data len %d too short for tile %v", len(data), t.Path())
}
t1, start, end := tileForIndex(t.H, index)
if t.L != t1.L || t.N != t1.N || t.W < t1.W {
return Hash{}, fmt.Errorf("index %v is in %v not %v", index, t1.Path(), t.Path())
}
return tileHash(data[start:end]), nil
}
// tileHash computes the subtree hash corresponding to the (2^K)-1 hashes in data.
func tileHash(data []byte) Hash {
if len(data) == 0 {
panic("bad math in tileHash")
}
if len(data) == HashSize {
var h Hash
copy(h[:], data)
return h
}
n := len(data) / 2
return NodeHash(tileHash(data[:n]), tileHash(data[n:]))
}
// NewTiles returns the coordinates of the tiles of height h ≥ 1
// that must be published when publishing from a tree of
// size newTreeSize to replace a tree of size oldTreeSize.
// (No tiles need to be published for a tree of size zero.)
func NewTiles(h int, oldTreeSize, newTreeSize int64) []Tile {
if h < 1 {
panic(fmt.Sprintf("NewTiles: invalid height %d", h))
}
H := uint(h)
var tiles []Tile
for level := uint(0); newTreeSize>>(H*level) > 0; level++ {
oldN := oldTreeSize >> (H * level)
newN := newTreeSize >> (H * level)
for n := oldN >> H; n < newN>>H; n++ {
tiles = append(tiles, Tile{H: h, L: int(level), N: n, W: 1 << H})
}
n := newN >> H
maxW := int(newN - n<<H)
minW := 1
if oldN > n<<H {
minW = int(oldN - n<<H)
}
for w := minW; w <= maxW; w++ {
tiles = append(tiles, Tile{H: h, L: int(level), N: n, W: w})
}
}
return tiles
}
// ReadTileData reads the hashes for tile t from r
// and returns the corresponding tile data.
func ReadTileData(t Tile, r HashReader) ([]byte, error) {
size := t.W
if size == 0 {
size = 1 << uint(t.H)
}
start := t.N << uint(t.H)
indexes := make([]int64, size)
for i := 0; i < size; i++ {
indexes[i] = StoredHashIndex(t.H*t.L, start+int64(i))
}
hashes, err := r.ReadHashes(indexes)
if err != nil {
return nil, err
}
if len(hashes) != len(indexes) {
return nil, fmt.Errorf("tlog: ReadHashes(%d indexes) = %d hashes", len(indexes), len(hashes))
}
tile := make([]byte, size*HashSize)
for i := 0; i < size; i++ {
copy(tile[i*HashSize:], hashes[i][:])
}
return tile, nil
}
// To limit the size of any particular directory listing,
// we encode the (possibly very large) number N
// by encoding three digits at a time.
// For example, 123456789 encodes as x123/x456/789.
// Each directory has at most 1000 each xNNN, NNN, and NNN.p children,
// so there are at most 3000 entries in any one directory.
const pathBase = 1000
// Path returns a tile coordinate path describing t.
func (t Tile) Path() string {
n := t.N
nStr := fmt.Sprintf("%03d", n%pathBase)
for n >= pathBase {
n /= pathBase
nStr = fmt.Sprintf("x%03d/%s", n%pathBase, nStr)
}
pStr := ""
if t.W != 1<<uint(t.H) {
pStr = fmt.Sprintf(".p/%d", t.W)
}
var L string
if t.L == -1 {
L = "data"
} else {
L = fmt.Sprintf("%d", t.L)
}
return fmt.Sprintf("tile/%d/%s/%s%s", t.H, L, nStr, pStr)
}
// ParseTilePath parses a tile coordinate path.
func ParseTilePath(path string) (Tile, error) {
f := strings.Split(path, "/")
if len(f) < 4 || f[0] != "tile" {
return Tile{}, &badPathError{path}
}
h, err1 := strconv.Atoi(f[1])
isData := false
if f[2] == "data" {
isData = true
f[2] = "0"
}
l, err2 := strconv.Atoi(f[2])
if err1 != nil || err2 != nil || h < 1 || l < 0 || h > 30 {
return Tile{}, &badPathError{path}
}
w := 1 << uint(h)
if dotP := f[len(f)-2]; strings.HasSuffix(dotP, ".p") {
ww, err := strconv.Atoi(f[len(f)-1])
if err != nil || ww <= 0 || ww >= w {
return Tile{}, &badPathError{path}
}
w = ww
f[len(f)-2] = dotP[:len(dotP)-len(".p")]
f = f[:len(f)-1]
}
f = f[3:]
n := int64(0)
for _, s := range f {
nn, err := strconv.Atoi(strings.TrimPrefix(s, "x"))
if err != nil || nn < 0 || nn >= pathBase {
return Tile{}, &badPathError{path}
}
n = n*pathBase + int64(nn)
}
if isData {
l = -1
}
t := Tile{H: h, L: l, N: n, W: w}
if path != t.Path() {
return Tile{}, &badPathError{path}
}
return t, nil
}
type badPathError struct {
path string
}
func (e *badPathError) Error() string {
return fmt.Sprintf("malformed tile path %q", e.path)
}
// A TileReader reads tiles from a go.sum database log.
type TileReader interface {
// Height returns the height of the available tiles.
Height() int
// ReadTiles returns the data for each requested tile.
// If ReadTiles returns err == nil, it must also return
// a data record for each tile (len(data) == len(tiles))
// and each data record must be the correct length
// (len(data[i]) == tiles[i].W*HashSize).
ReadTiles(tiles []Tile) (data [][]byte, err error)
// SaveTiles informs the TileReader that the tile data
// returned by ReadTiles has been confirmed as valid
// and can be saved in persistent storage (on disk).
SaveTiles(tiles []Tile, data [][]byte)
}
// TileHashReader returns a HashReader that satisfies requests
// by loading tiles of the given tree.
//
// The returned HashReader checks that loaded tiles are
// valid for the given tree. Therefore, any hashes returned
// by the HashReader are already proven to be in the tree.
func TileHashReader(tree Tree, tr TileReader) HashReader {
return &tileHashReader{tree: tree, tr: tr}
}
type tileHashReader struct {
tree Tree
tr TileReader
}
// tileParent returns t's k'th tile parent in the tiles for a tree of size n.
// If there is no such parent, tileParent returns Tile{}.
func tileParent(t Tile, k int, n int64) Tile {
t.L += k
t.N >>= uint(k * t.H)
t.W = 1 << uint(t.H)
if max := n >> uint(t.L*t.H); t.N<<uint(t.H)+int64(t.W) >= max {
if t.N<<uint(t.H) >= max {
return Tile{}
}
t.W = int(max - t.N<<uint(t.H))
}
return t
}
func (r *tileHashReader) ReadHashes(indexes []int64) ([]Hash, error) {
h := r.tr.Height()
tileOrder := make(map[Tile]int) // tileOrder[tileKey(tiles[i])] = i
var tiles []Tile
// Plan to fetch tiles necessary to recompute tree hash.
// If it matches, those tiles are authenticated.
stx := subTreeIndex(0, r.tree.N, nil)
stxTileOrder := make([]int, len(stx))
for i, x := range stx {
tile, _, _ := tileForIndex(h, x)
tile = tileParent(tile, 0, r.tree.N)
if j, ok := tileOrder[tile]; ok {
stxTileOrder[i] = j
continue
}
stxTileOrder[i] = len(tiles)
tileOrder[tile] = len(tiles)
tiles = append(tiles, tile)
}
// Plan to fetch tiles containing the indexes,
// along with any parent tiles needed
// for authentication. For most calls,
// the parents are being fetched anyway.
indexTileOrder := make([]int, len(indexes))
for i, x := range indexes {
if x >= StoredHashIndex(0, r.tree.N) {
return nil, fmt.Errorf("indexes not in tree")
}
tile, _, _ := tileForIndex(h, x)
// Walk up parent tiles until we find one we've requested.
// That one will be authenticated.
k := 0
for ; ; k++ {
p := tileParent(tile, k, r.tree.N)
if j, ok := tileOrder[p]; ok {
if k == 0 {
indexTileOrder[i] = j
}
break
}
}
// Walk back down recording child tiles after parents.
// This loop ends by revisiting the tile for this index
// (tileParent(tile, 0, r.tree.N)) unless k == 0, in which
// case the previous loop did it.
for k--; k >= 0; k-- {
p := tileParent(tile, k, r.tree.N)
if p.W != 1<<uint(p.H) {
// Only full tiles have parents.
// This tile has a parent, so it must be full.
return nil, fmt.Errorf("bad math in tileHashReader: %d %d %v", r.tree.N, x, p)
}
tileOrder[p] = len(tiles)
if k == 0 {
indexTileOrder[i] = len(tiles)
}
tiles = append(tiles, p)
}
}
// Fetch all the tile data.
data, err := r.tr.ReadTiles(tiles)
if err != nil {
return nil, err
}
if len(data) != len(tiles) {
return nil, fmt.Errorf("TileReader returned bad result slice (len=%d, want %d)", len(data), len(tiles))
}
for i, tile := range tiles {
if len(data[i]) != tile.W*HashSize {
return nil, fmt.Errorf("TileReader returned bad result slice (%v len=%d, want %d)", tile.Path(), len(data[i]), tile.W*HashSize)
}
}
// Authenticate the initial tiles against the tree hash.
// They are arranged so that parents are authenticated before children.
// First the tiles needed for the tree hash.
th, err := HashFromTile(tiles[stxTileOrder[len(stx)-1]], data[stxTileOrder[len(stx)-1]], stx[len(stx)-1])
if err != nil {
return nil, err
}
for i := len(stx) - 2; i >= 0; i-- {
h, err := HashFromTile(tiles[stxTileOrder[i]], data[stxTileOrder[i]], stx[i])
if err != nil {
return nil, err
}
th = NodeHash(h, th)
}
if th != r.tree.Hash {
// The tiles do not support the tree hash.
// We know at least one is wrong, but not which one.
return nil, fmt.Errorf("downloaded inconsistent tile")
}
// Authenticate full tiles against their parents.
for i := len(stx); i < len(tiles); i++ {
tile := tiles[i]
p := tileParent(tile, 1, r.tree.N)
j, ok := tileOrder[p]
if !ok {
return nil, fmt.Errorf("bad math in tileHashReader %d %v: lost parent of %v", r.tree.N, indexes, tile)
}
h, err := HashFromTile(p, data[j], StoredHashIndex(p.L*p.H, tile.N))
if err != nil {
return nil, fmt.Errorf("bad math in tileHashReader %d %v: lost hash of %v: %v", r.tree.N, indexes, tile, err)
}
if h != tileHash(data[i]) {
return nil, fmt.Errorf("downloaded inconsistent tile")
}
}
// Now we have all the tiles needed for the requested hashes,
// and we've authenticated the full tile set against the trusted tree hash.
r.tr.SaveTiles(tiles, data)
// Pull out the requested hashes.
hashes := make([]Hash, len(indexes))
for i, x := range indexes {
j := indexTileOrder[i]
h, err := HashFromTile(tiles[j], data[j], x)
if err != nil {
return nil, fmt.Errorf("bad math in tileHashReader %d %v: lost hash %v: %v", r.tree.N, indexes, x, err)
}
hashes[i] = h
}
return hashes, nil
}
|