1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
|
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package iconvg
import (
"image"
"image/color"
"image/draw"
"math"
"golang.org/x/exp/shiny/iconvg/internal/gradient"
"golang.org/x/image/math/f64"
"golang.org/x/image/vector"
)
const (
smoothTypeNone = iota
smoothTypeQuad
smoothTypeCube
)
// Rasterizer is a Destination that draws an IconVG graphic onto a raster
// image.
//
// The zero value is usable, in that it has no raster image to draw onto, so
// that calling Decode with this Destination is a no-op (other than checking
// the encoded form for errors in the byte code). Call SetDstImage to change
// the raster image, before calling Decode or between calls to Decode.
type Rasterizer struct {
z vector.Rasterizer
dst draw.Image
r image.Rectangle
drawOp draw.Op
// scale and bias transforms the metadata.ViewBox rectangle to the (0, 0) -
// (r.Dx(), r.Dy()) rectangle.
scaleX float32
biasX float32
scaleY float32
biasY float32
metadata Metadata
lod0 float32
lod1 float32
cSel uint8
nSel uint8
disabled bool
firstStartPath bool
prevSmoothType uint8
prevSmoothPointX float32
prevSmoothPointY float32
fill image.Image
flatColor color.RGBA
flatImage image.Uniform
gradient gradient.Gradient
cReg [64]color.RGBA
nReg [64]float32
stops [64]gradient.Stop
}
// SetDstImage sets the Rasterizer to draw onto a destination image, given by
// dst and r, with the given compositing operator.
//
// The IconVG graphic (which does not have a fixed size in pixels) will be
// scaled in the X and Y dimensions to fit the rectangle r. The scaling factors
// may differ in the two dimensions.
func (z *Rasterizer) SetDstImage(dst draw.Image, r image.Rectangle, drawOp draw.Op) {
z.dst = dst
if r.Empty() {
r = image.Rectangle{}
}
z.r = r
z.drawOp = drawOp
z.recalcTransform()
}
// Reset resets the Rasterizer for the given Metadata.
func (z *Rasterizer) Reset(m Metadata) {
z.metadata = m
z.lod0 = 0
z.lod1 = positiveInfinity
z.cSel = 0
z.nSel = 0
z.firstStartPath = true
z.prevSmoothType = smoothTypeNone
z.prevSmoothPointX = 0
z.prevSmoothPointY = 0
z.cReg = m.Palette
z.nReg = [64]float32{}
z.recalcTransform()
}
func (z *Rasterizer) recalcTransform() {
z.scaleX = float32(z.r.Dx()) / (z.metadata.ViewBox.Max[0] - z.metadata.ViewBox.Min[0])
z.biasX = -z.metadata.ViewBox.Min[0]
z.scaleY = float32(z.r.Dy()) / (z.metadata.ViewBox.Max[1] - z.metadata.ViewBox.Min[1])
z.biasY = -z.metadata.ViewBox.Min[1]
}
func (z *Rasterizer) SetCSel(cSel uint8) { z.cSel = cSel & 0x3f }
func (z *Rasterizer) SetNSel(nSel uint8) { z.nSel = nSel & 0x3f }
func (z *Rasterizer) SetCReg(adj uint8, incr bool, c Color) {
z.cReg[(z.cSel-adj)&0x3f] = c.Resolve(&z.metadata.Palette, &z.cReg)
if incr {
z.cSel++
}
}
func (z *Rasterizer) SetNReg(adj uint8, incr bool, f float32) {
z.nReg[(z.nSel-adj)&0x3f] = f
if incr {
z.nSel++
}
}
func (z *Rasterizer) SetLOD(lod0, lod1 float32) {
z.lod0, z.lod1 = lod0, lod1
}
func (z *Rasterizer) unabsX(x float32) float32 { return x/z.scaleX - z.biasX }
func (z *Rasterizer) unabsY(y float32) float32 { return y/z.scaleY - z.biasY }
func (z *Rasterizer) absX(x float32) float32 { return z.scaleX * (x + z.biasX) }
func (z *Rasterizer) absY(y float32) float32 { return z.scaleY * (y + z.biasY) }
func (z *Rasterizer) relX(x float32) float32 { return z.scaleX * x }
func (z *Rasterizer) relY(y float32) float32 { return z.scaleY * y }
func (z *Rasterizer) absVec2(x, y float32) (zx, zy float32) {
return z.absX(x), z.absY(y)
}
func (z *Rasterizer) relVec2(x, y float32) (zx, zy float32) {
px, py := z.z.Pen()
return px + z.relX(x), py + z.relY(y)
}
// implicitSmoothPoint returns the implicit control point for smooth-quadratic
// and smooth-cubic Bézier curves.
//
// https://www.w3.org/TR/SVG/paths.html#PathDataCurveCommands says, "The first
// control point is assumed to be the reflection of the second control point on
// the previous command relative to the current point. (If there is no previous
// command or if the previous command was not [a quadratic or cubic command],
// assume the first control point is coincident with the current point.)"
func (z *Rasterizer) implicitSmoothPoint(thisSmoothType uint8) (zx, zy float32) {
px, py := z.z.Pen()
if z.prevSmoothType != thisSmoothType {
return px, py
}
return 2*px - z.prevSmoothPointX, 2*py - z.prevSmoothPointY
}
func (z *Rasterizer) initGradient(rgba color.RGBA) (ok bool) {
nStops := int(rgba.R & 0x3f)
cBase := int(rgba.G & 0x3f)
nBase := int(rgba.B & 0x3f)
prevN := negativeInfinity
for i := 0; i < nStops; i++ {
c := z.cReg[(cBase+i)&0x3f]
if !validAlphaPremulColor(c) {
return false
}
n := z.nReg[(nBase+i)&0x3f]
if !(0 <= n && n <= 1) || !(n > prevN) {
return false
}
prevN = n
z.stops[i] = gradient.Stop{
Offset: float64(n),
RGBA64: color.RGBA64{
R: uint16(c.R) * 0x101,
G: uint16(c.G) * 0x101,
B: uint16(c.B) * 0x101,
A: uint16(c.A) * 0x101,
},
}
}
// The affine transformation matrix in the IconVG graphic, stored in 6
// contiguous NREG registers, goes from graphic coordinate space (i.e. the
// metadata viewBox) to the gradient coordinate space. We need it to start
// in pixel space, not graphic coordinate space.
invZSX := 1 / float64(z.scaleX)
invZSY := 1 / float64(z.scaleY)
zBX := float64(z.biasX)
zBY := float64(z.biasY)
a := float64(z.nReg[(nBase-6)&0x3f])
b := float64(z.nReg[(nBase-5)&0x3f])
c := float64(z.nReg[(nBase-4)&0x3f])
d := float64(z.nReg[(nBase-3)&0x3f])
e := float64(z.nReg[(nBase-2)&0x3f])
f := float64(z.nReg[(nBase-1)&0x3f])
pix2Grad := f64.Aff3{
a * invZSX,
b * invZSY,
c - a*zBX - b*zBY,
d * invZSX,
e * invZSY,
f - d*zBX - e*zBY,
}
shape := gradient.ShapeLinear
if (rgba.B>>6)&0x01 != 0 {
shape = gradient.ShapeRadial
}
z.gradient.Init(
shape,
gradient.Spread(rgba.G>>6),
pix2Grad,
z.stops[:nStops],
)
return true
}
func (z *Rasterizer) StartPath(adj uint8, x, y float32) {
z.flatColor = z.cReg[(z.cSel-adj)&0x3f]
if validAlphaPremulColor(z.flatColor) {
z.flatImage.C = &z.flatColor
z.fill = &z.flatImage
z.disabled = z.flatColor.A == 0
} else if z.flatColor.A == 0x00 && z.flatColor.B&0x80 != 0 {
z.fill = &z.gradient
z.disabled = !z.initGradient(z.flatColor)
} else {
z.fill = nil
z.disabled = true
}
width, height := z.r.Dx(), z.r.Dy()
h := float32(height)
z.disabled = z.disabled || !(z.lod0 <= h && h < z.lod1)
if z.disabled {
return
}
z.z.Reset(width, height)
if z.firstStartPath {
z.firstStartPath = false
z.z.DrawOp = z.drawOp
}
z.prevSmoothType = smoothTypeNone
z.z.MoveTo(z.absVec2(x, y))
}
func (z *Rasterizer) ClosePathEndPath() {
if z.disabled {
return
}
z.z.ClosePath()
if z.dst == nil {
return
}
z.z.Draw(z.dst, z.r, z.fill, image.Point{})
}
func (z *Rasterizer) ClosePathAbsMoveTo(x, y float32) {
if z.disabled {
return
}
z.prevSmoothType = smoothTypeNone
z.z.ClosePath()
z.z.MoveTo(z.absVec2(x, y))
}
func (z *Rasterizer) ClosePathRelMoveTo(x, y float32) {
if z.disabled {
return
}
z.prevSmoothType = smoothTypeNone
z.z.ClosePath()
z.z.MoveTo(z.relVec2(x, y))
}
func (z *Rasterizer) AbsHLineTo(x float32) {
if z.disabled {
return
}
_, py := z.z.Pen()
z.prevSmoothType = smoothTypeNone
z.z.LineTo(z.absX(x), py)
}
func (z *Rasterizer) RelHLineTo(x float32) {
if z.disabled {
return
}
px, py := z.z.Pen()
z.prevSmoothType = smoothTypeNone
z.z.LineTo(px+z.relX(x), py)
}
func (z *Rasterizer) AbsVLineTo(y float32) {
if z.disabled {
return
}
px, _ := z.z.Pen()
z.prevSmoothType = smoothTypeNone
z.z.LineTo(px, z.absY(y))
}
func (z *Rasterizer) RelVLineTo(y float32) {
if z.disabled {
return
}
px, py := z.z.Pen()
z.prevSmoothType = smoothTypeNone
z.z.LineTo(px, py+z.relY(y))
}
func (z *Rasterizer) AbsLineTo(x, y float32) {
if z.disabled {
return
}
z.prevSmoothType = smoothTypeNone
z.z.LineTo(z.absVec2(x, y))
}
func (z *Rasterizer) RelLineTo(x, y float32) {
if z.disabled {
return
}
z.prevSmoothType = smoothTypeNone
z.z.LineTo(z.relVec2(x, y))
}
func (z *Rasterizer) AbsSmoothQuadTo(x, y float32) {
if z.disabled {
return
}
x1, y1 := z.implicitSmoothPoint(smoothTypeQuad)
x, y = z.absVec2(x, y)
z.prevSmoothType = smoothTypeQuad
z.prevSmoothPointX, z.prevSmoothPointY = x1, y1
z.z.QuadTo(x1, y1, x, y)
}
func (z *Rasterizer) RelSmoothQuadTo(x, y float32) {
if z.disabled {
return
}
x1, y1 := z.implicitSmoothPoint(smoothTypeQuad)
x, y = z.relVec2(x, y)
z.prevSmoothType = smoothTypeQuad
z.prevSmoothPointX, z.prevSmoothPointY = x1, y1
z.z.QuadTo(x1, y1, x, y)
}
func (z *Rasterizer) AbsQuadTo(x1, y1, x, y float32) {
if z.disabled {
return
}
x1, y1 = z.absVec2(x1, y1)
x, y = z.absVec2(x, y)
z.prevSmoothType = smoothTypeQuad
z.prevSmoothPointX, z.prevSmoothPointY = x1, y1
z.z.QuadTo(x1, y1, x, y)
}
func (z *Rasterizer) RelQuadTo(x1, y1, x, y float32) {
if z.disabled {
return
}
x1, y1 = z.relVec2(x1, y1)
x, y = z.relVec2(x, y)
z.prevSmoothType = smoothTypeQuad
z.prevSmoothPointX, z.prevSmoothPointY = x1, y1
z.z.QuadTo(x1, y1, x, y)
}
func (z *Rasterizer) AbsSmoothCubeTo(x2, y2, x, y float32) {
if z.disabled {
return
}
x1, y1 := z.implicitSmoothPoint(smoothTypeCube)
x2, y2 = z.absVec2(x2, y2)
x, y = z.absVec2(x, y)
z.prevSmoothType = smoothTypeCube
z.prevSmoothPointX, z.prevSmoothPointY = x2, y2
z.z.CubeTo(x1, y1, x2, y2, x, y)
}
func (z *Rasterizer) RelSmoothCubeTo(x2, y2, x, y float32) {
if z.disabled {
return
}
x1, y1 := z.implicitSmoothPoint(smoothTypeCube)
x2, y2 = z.relVec2(x2, y2)
x, y = z.relVec2(x, y)
z.prevSmoothType = smoothTypeCube
z.prevSmoothPointX, z.prevSmoothPointY = x2, y2
z.z.CubeTo(x1, y1, x2, y2, x, y)
}
func (z *Rasterizer) AbsCubeTo(x1, y1, x2, y2, x, y float32) {
if z.disabled {
return
}
x1, y1 = z.absVec2(x1, y1)
x2, y2 = z.absVec2(x2, y2)
x, y = z.absVec2(x, y)
z.prevSmoothType = smoothTypeCube
z.prevSmoothPointX, z.prevSmoothPointY = x2, y2
z.z.CubeTo(x1, y1, x2, y2, x, y)
}
func (z *Rasterizer) RelCubeTo(x1, y1, x2, y2, x, y float32) {
if z.disabled {
return
}
x1, y1 = z.relVec2(x1, y1)
x2, y2 = z.relVec2(x2, y2)
x, y = z.relVec2(x, y)
z.prevSmoothType = smoothTypeCube
z.prevSmoothPointX, z.prevSmoothPointY = x2, y2
z.z.CubeTo(x1, y1, x2, y2, x, y)
}
func (z *Rasterizer) AbsArcTo(rx, ry, xAxisRotation float32, largeArc, sweep bool, x, y float32) {
if z.disabled {
return
}
z.prevSmoothType = smoothTypeNone
// We follow the "Conversion from endpoint to center parameterization"
// algorithm as per
// https://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
// There seems to be a bug in the spec's "implementation notes".
//
// Actual implementations, such as
// - https://git.gnome.org/browse/librsvg/tree/rsvg-path.c
// - http://svn.apache.org/repos/asf/xmlgraphics/batik/branches/svg11/sources/org/apache/batik/ext/awt/geom/ExtendedGeneralPath.java
// - https://java.net/projects/svgsalamander/sources/svn/content/trunk/svg-core/src/main/java/com/kitfox/svg/pathcmd/Arc.java
// - https://github.com/millermedeiros/SVGParser/blob/master/com/millermedeiros/geom/SVGArc.as
// do something slightly different (marked with a †).
// (†) The Abs isn't part of the spec. Neither is checking that Rx and Ry
// are non-zero (and non-NaN).
Rx := math.Abs(float64(rx))
Ry := math.Abs(float64(ry))
if !(Rx > 0 && Ry > 0) {
z.z.LineTo(x, y)
return
}
// We work in IconVG coordinates (e.g. from -32 to +32 by default), rather
// than destination image coordinates (e.g. the width of the dst image),
// since the rx and ry radii also need to be scaled, but their scaling
// factors can be different, and aren't trivial to calculate due to
// xAxisRotation.
//
// We convert back to destination image coordinates via absX and absY calls
// later, during arcSegmentTo.
penX, penY := z.z.Pen()
x1 := float64(z.unabsX(penX))
y1 := float64(z.unabsY(penY))
x2 := float64(x)
y2 := float64(y)
phi := 2 * math.Pi * float64(xAxisRotation)
// Step 1: Compute (x1′, y1′)
halfDx := (x1 - x2) / 2
halfDy := (y1 - y2) / 2
cosPhi := math.Cos(phi)
sinPhi := math.Sin(phi)
x1Prime := +cosPhi*halfDx + sinPhi*halfDy
y1Prime := -sinPhi*halfDx + cosPhi*halfDy
// Step 2: Compute (cx′, cy′)
rxSq := Rx * Rx
rySq := Ry * Ry
x1PrimeSq := x1Prime * x1Prime
y1PrimeSq := y1Prime * y1Prime
// (†) Check that the radii are large enough.
radiiCheck := x1PrimeSq/rxSq + y1PrimeSq/rySq
if radiiCheck > 1 {
c := math.Sqrt(radiiCheck)
Rx *= c
Ry *= c
rxSq = Rx * Rx
rySq = Ry * Ry
}
denom := rxSq*y1PrimeSq + rySq*x1PrimeSq
step2 := 0.0
if a := rxSq*rySq/denom - 1; a > 0 {
step2 = math.Sqrt(a)
}
if largeArc == sweep {
step2 = -step2
}
cxPrime := +step2 * Rx * y1Prime / Ry
cyPrime := -step2 * Ry * x1Prime / Rx
// Step 3: Compute (cx, cy) from (cx′, cy′)
cx := +cosPhi*cxPrime - sinPhi*cyPrime + (x1+x2)/2
cy := +sinPhi*cxPrime + cosPhi*cyPrime + (y1+y2)/2
// Step 4: Compute θ1 and Δθ
ax := (+x1Prime - cxPrime) / Rx
ay := (+y1Prime - cyPrime) / Ry
bx := (-x1Prime - cxPrime) / Rx
by := (-y1Prime - cyPrime) / Ry
theta1 := angle(1, 0, ax, ay)
deltaTheta := angle(ax, ay, bx, by)
if sweep {
if deltaTheta < 0 {
deltaTheta += 2 * math.Pi
}
} else {
if deltaTheta > 0 {
deltaTheta -= 2 * math.Pi
}
}
// This ends the
// https://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
// algorithm. What follows below is specific to this implementation.
// We approximate an arc by one or more cubic Bézier curves.
n := int(math.Ceil(math.Abs(deltaTheta) / (math.Pi/2 + 0.001)))
for i := 0; i < n; i++ {
z.arcSegmentTo(cx, cy,
theta1+deltaTheta*float64(i+0)/float64(n),
theta1+deltaTheta*float64(i+1)/float64(n),
Rx, Ry, cosPhi, sinPhi,
)
}
}
// arcSegmentTo approximates an arc by a cubic Bézier curve. The mathematical
// formulae for the control points are the same as that used by librsvg.
func (z *Rasterizer) arcSegmentTo(cx, cy, theta1, theta2, rx, ry, cosPhi, sinPhi float64) {
halfDeltaTheta := (theta2 - theta1) * 0.5
q := math.Sin(halfDeltaTheta * 0.5)
t := (8 * q * q) / (3 * math.Sin(halfDeltaTheta))
cos1 := math.Cos(theta1)
sin1 := math.Sin(theta1)
cos2 := math.Cos(theta2)
sin2 := math.Sin(theta2)
x1 := rx * (+cos1 - t*sin1)
y1 := ry * (+sin1 + t*cos1)
x2 := rx * (+cos2 + t*sin2)
y2 := ry * (+sin2 - t*cos2)
x3 := rx * (+cos2)
y3 := ry * (+sin2)
z.z.CubeTo(
z.absX(float32(cx+cosPhi*x1-sinPhi*y1)),
z.absY(float32(cy+sinPhi*x1+cosPhi*y1)),
z.absX(float32(cx+cosPhi*x2-sinPhi*y2)),
z.absY(float32(cy+sinPhi*x2+cosPhi*y2)),
z.absX(float32(cx+cosPhi*x3-sinPhi*y3)),
z.absY(float32(cy+sinPhi*x3+cosPhi*y3)),
)
}
func (z *Rasterizer) RelArcTo(rx, ry, xAxisRotation float32, largeArc, sweep bool, x, y float32) {
ax, ay := z.relVec2(x, y)
z.AbsArcTo(rx, ry, xAxisRotation, largeArc, sweep, z.unabsX(ax), z.unabsY(ay))
}
// angle returns the angle between the u and v vectors.
func angle(ux, uy, vx, vy float64) float64 {
uNorm := math.Sqrt(ux*ux + uy*uy)
vNorm := math.Sqrt(vx*vx + vy*vy)
norm := uNorm * vNorm
cos := (ux*vx + uy*vy) / norm
ret := 0.0
if cos <= -1 {
ret = math.Pi
} else if cos >= +1 {
ret = 0
} else {
ret = math.Acos(cos)
}
if ux*vy < uy*vx {
return -ret
}
return +ret
}
|