1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
|
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package iconvg
import (
"bytes"
"errors"
"image/color"
"math"
)
// UpgradeToFileFormatVersion1Options are the options to the
// UpgradeToFileFormatVersion1 function.
type UpgradeToFileFormatVersion1Options struct {
// ArcsExpandWithHighResolutionCoordinates is like the
// Encoder.HighResolutionCoordinates field. It controls whether to favor
// file size (false) or precision (true) when replacing File Format Version
// 0's arcs with cubic Bézier curves.
ArcsExpandWithHighResolutionCoordinates bool
}
// UpgradeToFileFormatVersion1 upgrades IconVG data from the 2016 experimental
// "File Format Version 0" to the 2021 "File Format Version 1".
//
// This package (golang.org/x/exp/shiny/iconvg) holds a decoder for FFV0,
// including this function to convert from FFV0 to FFV1. Different packages
// (github.com/google/iconvg/src/go/*) decode FFV1.
//
// Amongst some new features and other clean-ups, FFV1 sets up the capability
// for animated vector graphics, therefore removing some FFV0 features (such as
// arc segments) that can be hard to animate smoothly. The IconvG FFV1 format
// and its design decisions are discussed at
// https://github.com/google/iconvg/issues/4#issuecomment-874105547
func UpgradeToFileFormatVersion1(v0 []byte, opts *UpgradeToFileFormatVersion1Options) (v1 []byte, retErr error) {
u := &upgrader{}
if opts != nil {
u.opts = *opts
}
for i := range u.creg {
u.creg[i] = upgradeColor{
typ: ColorTypePaletteIndex,
paletteIndex: uint8(i),
}
}
if !bytes.HasPrefix(v0, magicBytes) {
return nil, errInvalidMagicIdentifier
}
v1 = append(v1, "\x8AIVG"...)
v0 = v0[4:]
v1, v0, retErr = u.upgradeMetadata(v1, v0)
if retErr != nil {
return nil, retErr
}
v1, _, retErr = u.upgradeBytecode(v1, v0)
if retErr != nil {
return nil, retErr
}
return v1, nil
}
const (
upgradeVerbMoveTo = 0
upgradeVerbLineTo = 1
upgradeVerbQuadTo = 2
upgradeVerbCubeTo = 3
)
type upgrader struct {
opts UpgradeToFileFormatVersion1Options
// These fields hold the current path's geometry.
verbs []uint8
args [][2]float32
// These fields track most of the FFV0 virtual machine register state. The
// FFV1 register model is different enough that we don't just translate
// each FFV0 register-related opcode individually.
creg [64]upgradeColor
nreg [64]float32
csel uint32
nsel uint32
fill uint32
// These fields track the most recent color written to FFV1 register
// REGS[SEL+7] (and SEL is kept at 56). As a file size optimization, we
// don't have to emit the first half of "Set REGS[SEL+7] = etc; Use
// REGS[SEL+7]" if the register already holds the "etc" value.
regsSel7 color.RGBA
hasRegsSel7 bool
// calculatingJumpLOD is whether the upgrader.upgradeBytecode method is
// being called recursively. FFV0 sets a Level-Of-Detail filter that
// applies implicitly until the next SetLOD opcode (if any). FFV1 instead
// explicitly gives the number of opcodes to skip if outside the LOD range.
calculatingJumpLOD bool
}
func (u *upgrader) upgradeMetadata(v1 buffer, v0 buffer) (newV1 buffer, newV0 buffer, retErr error) {
nMetadataChunks, n := v0.decodeNatural()
if n == 0 {
return nil, nil, errInvalidNumberOfMetadataChunks
}
v1.encodeNaturalFFV1(nMetadataChunks)
v0 = v0[n:]
for ; nMetadataChunks > 0; nMetadataChunks-- {
length, n := v0.decodeNatural()
if n == 0 {
return nil, nil, errInvalidMetadataChunkLength
}
v0 = v0[n:]
if uint64(length) > uint64(len(v0)) {
return nil, nil, errInvalidMetadataChunkLength
}
upgrade, err := u.upgradeMetadataChunk(v0[:length])
if err != nil {
return nil, nil, err
}
v1.encodeNaturalFFV1(uint32(len(upgrade)))
v1 = append(v1, upgrade...)
v0 = v0[length:]
}
return v1, v0, nil
}
func (u *upgrader) upgradeMetadataChunk(v0 buffer) (v1 buffer, retErr error) {
mid, n := v0.decodeNatural()
if n == 0 {
return nil, errInvalidMetadataIdentifier
}
switch mid {
case midViewBox:
mid = ffv1MIDViewBox
case midSuggestedPalette:
mid = ffv1MIDSuggestedPalette
default:
return nil, errInvalidMetadataIdentifier
}
v1.encodeNaturalFFV1(mid)
v0 = v0[n:]
switch mid {
case ffv1MIDViewBox:
for i := 0; i < 4; i++ {
x, n := v0.decodeNatural()
if n == 0 {
return nil, errInvalidViewBox
}
v1.encodeNaturalFFV1(x)
v0 = v0[n:]
}
if len(v0) != 0 {
return nil, errInvalidViewBox
}
case ffv1MIDSuggestedPalette:
if len(v0) == 0 {
return nil, errInvalidSuggestedPalette
}
numColors := 1 + int(v0[0]&0x3f)
colorLength := 1 + int(v0[0]>>6)
v1 = append(v1, uint8(numColors-1))
v0 = v0[1:]
for i := 0; i < numColors; i++ {
c, n := Color{}, 0
switch colorLength {
case 1:
c, n = v0.decodeColor1()
case 2:
c, n = v0.decodeColor2()
case 3:
c, n = v0.decodeColor3Direct()
case 4:
c, n = v0.decodeColor4()
}
if n == 0 {
return nil, errInvalidSuggestedPalette
} else if (c.typ == ColorTypeRGBA) && validAlphaPremulColor(c.data) {
v1 = append(v1, c.data.R, c.data.G, c.data.B, c.data.A)
} else {
v1 = append(v1, 0x00, 0x00, 0x00, 0xff)
}
v0 = v0[n:]
}
if len(v0) != 0 {
return nil, errInvalidSuggestedPalette
}
}
return v1, nil
}
func (u *upgrader) upgradeBytecode(v1 buffer, v0 buffer) (newV1 buffer, newV0 buffer, retErr error) {
uf := upgradeFunc(upgradeStyling)
for len(v0) > 0 {
uf, v1, v0, retErr = uf(u, v1, v0)
if retErr != nil {
if retErr == errCalculatingJumpLOD {
return v1, v0, nil
}
return nil, nil, retErr
}
}
return v1, v0, nil
}
var errCalculatingJumpLOD = errors.New("iconvg: calculating JumpLOD")
type upgradeFunc func(*upgrader, buffer, buffer) (upgradeFunc, buffer, buffer, error)
func upgradeStyling(u *upgrader, v1 buffer, v0 buffer) (uf upgradeFunc, newV1 buffer, newV0 buffer, retErr error) {
for len(v0) > 0 {
switch opcode := v0[0]; {
case opcode < 0x80: // "Set CSEL/NSEL"
if opcode < 0x40 {
u.csel = uint32(opcode & 63)
} else {
u.nsel = uint32(opcode & 63)
}
v0 = v0[1:]
case opcode < 0xa8: // "Set CREG[etc] to an etc color"
adj := uint32(opcode & 7)
if adj == 7 {
adj = 0
}
index := (u.csel - adj) & 63
v0 = v0[1:]
c, n := Color{}, 0
switch (opcode - 0x80) >> 3 {
case 0:
c, n = v0.decodeColor1()
case 1:
c, n = v0.decodeColor2()
case 2:
c, n = v0.decodeColor3Direct()
case 3:
c, n = v0.decodeColor4()
case 4:
c, n = v0.decodeColor3Indirect()
}
if n == 0 {
return nil, nil, nil, errInvalidColor
}
u.creg[index], retErr = u.resolve(c, false)
if retErr != nil {
return nil, nil, nil, retErr
}
v0 = v0[n:]
if (opcode & 7) == 7 {
u.csel = (u.csel + 1) & 63
}
case opcode < 0xc0: // "Set NREG[etc] to a real number"
adj := uint32(opcode & 7)
if adj == 7 {
adj = 0
}
index := (u.nsel - adj) & 63
v0 = v0[1:]
f, n := float32(0), 0
switch (opcode - 0x80) >> 3 {
case 5:
f, n = v0.decodeReal()
case 6:
f, n = v0.decodeCoordinate()
case 7:
f, n = v0.decodeZeroToOne()
}
if n == 0 {
return nil, nil, nil, errInvalidNumber
}
u.nreg[index] = f
v0 = v0[n:]
if (opcode & 7) == 7 {
u.nsel = (u.nsel + 1) & 63
}
case opcode < 0xc7: // Start path.
adj := uint32(opcode & 7)
u.fill = (u.csel - adj) & 63
v1 = append(v1, 0x35) // FFV1 MoveTo.
v0 = v0[1:]
return upgradeDrawing, v1, v0, nil
case opcode == 0xc7: // "Set LOD"
if u.calculatingJumpLOD {
u.calculatingJumpLOD = false
return nil, v1, v0, errCalculatingJumpLOD
}
v0 = v0[1:]
lod := [2]float32{}
for i := range lod {
f, n := v0.decodeReal()
if n == 0 {
return nil, nil, nil, errInvalidNumber
}
lod[i] = f
v0 = v0[n:]
}
if (lod[0] == 0) && math.IsInf(float64(lod[1]), +1) {
break
}
u.calculatingJumpLOD = true
ifTrue := []byte(nil)
if ifTrue, v0, retErr = u.upgradeBytecode(nil, v0); retErr != nil {
return nil, nil, nil, retErr
}
nInstructions := countFFV1Instructions(ifTrue)
if nInstructions >= (1 << 30) {
return nil, nil, nil, errUnsupportedUpgrade
}
v1 = append(v1, 0x3a) // FFV1 JumpLOD.
v1.encodeNaturalFFV1(uint32(nInstructions))
v1.encodeCoordinateFFV1(lod[0])
v1.encodeCoordinateFFV1(lod[1])
v1 = append(v1, ifTrue...)
default:
return nil, nil, nil, errUnsupportedStylingOpcode
}
}
return upgradeStyling, v1, v0, nil
}
func upgradeDrawing(u *upgrader, v1 buffer, v0 buffer) (uf upgradeFunc, newV1 buffer, newV0 buffer, retErr error) {
u.verbs = u.verbs[:0]
u.args = u.args[:0]
coords := [3][2]float32{}
pen := [2]float32{}
prevSmoothType := smoothTypeNone
prevSmoothPoint := [2]float32{}
// Handle the implicit M after a "Start path" styling op.
v0, retErr = decodeCoordinates(pen[:2], nil, v0)
if retErr != nil {
return nil, nil, nil, retErr
}
u.verbs = append(u.verbs, upgradeVerbMoveTo)
u.args = append(u.args, pen)
startingPoint := pen
for len(v0) > 0 {
switch opcode := v0[0]; {
case opcode < 0xc0: // LineTo, QuadTo, CubeTo.
nCoordPairs, nReps, relative, smoothType := 0, 1+int(opcode&0x0f), false, smoothTypeNone
switch opcode >> 4 {
case 0x00, 0x01: // "L (absolute lineTo)"
nCoordPairs = 1
nReps = 1 + int(opcode&0x1f)
case 0x02, 0x03: // "l (relative lineTo)"
nCoordPairs = 1
nReps = 1 + int(opcode&0x1f)
relative = true
case 0x04: // "T (absolute smooth quadTo)"
nCoordPairs = 1
smoothType = smoothTypeQuad
case 0x05: // "t (relative smooth quadTo)"
nCoordPairs = 1
relative = true
smoothType = smoothTypeQuad
case 0x06: // "Q (absolute quadTo)"
nCoordPairs = 2
case 0x07: // "q (relative quadTo)"
nCoordPairs = 2
relative = true
case 0x08: // "S (absolute smooth cubeTo)"
nCoordPairs = 2
smoothType = smoothTypeCube
case 0x09: // "s (relative smooth cubeTo)"
nCoordPairs = 2
relative = true
smoothType = smoothTypeCube
case 0x0a: // "C (absolute cubeTo)"
nCoordPairs = 3
case 0x0b: // "c (relative cubeTo)"
nCoordPairs = 3
relative = true
}
v0 = v0[1:]
for i := 0; i < nReps; i++ {
smoothIndex := 0
if smoothType != smoothTypeNone {
smoothIndex = 1
if smoothType != prevSmoothType {
coords[0][0] = pen[0]
coords[0][1] = pen[1]
} else {
coords[0][0] = (2 * pen[0]) - prevSmoothPoint[0]
coords[0][1] = (2 * pen[1]) - prevSmoothPoint[1]
}
}
allCoords := coords[:smoothIndex+nCoordPairs]
explicitCoords := allCoords[smoothIndex:]
v0, retErr = decodeCoordinatePairs(explicitCoords, nil, v0)
if retErr != nil {
return nil, nil, nil, retErr
}
if relative {
for c := range explicitCoords {
explicitCoords[c][0] += pen[0]
explicitCoords[c][1] += pen[1]
}
}
u.verbs = append(u.verbs, uint8(len(allCoords)))
u.args = append(u.args, allCoords...)
pen = allCoords[len(allCoords)-1]
if len(allCoords) == 2 {
prevSmoothPoint = allCoords[0]
prevSmoothType = smoothTypeQuad
} else if len(allCoords) == 3 {
prevSmoothPoint = allCoords[1]
prevSmoothType = smoothTypeCube
} else {
prevSmoothType = smoothTypeNone
}
}
case opcode < 0xe0: // ArcTo.
v1, v0, retErr = u.upgradeArcs(&pen, v1, v0)
if retErr != nil {
return nil, nil, nil, retErr
}
prevSmoothType = smoothTypeNone
default: // Other drawing opcodes.
v0 = v0[1:]
switch opcode {
case 0xe1: // "z (closePath); end path"
goto endPath
case 0xe2, 0xe3: // "z (closePath); M (absolute/relative moveTo)"
v0, retErr = decodeCoordinatePairs(coords[:1], nil, v0)
if retErr != nil {
return nil, nil, nil, retErr
}
if opcode == 0xe2 {
pen[0] = coords[0][0]
pen[1] = coords[0][1]
} else {
pen[0] += coords[0][0]
pen[1] += coords[0][1]
}
u.verbs = append(u.verbs, upgradeVerbMoveTo)
u.args = append(u.args, pen)
default:
tmp := [1]float32{}
v0, retErr = decodeCoordinates(tmp[:1], nil, v0)
if retErr != nil {
return nil, nil, nil, retErr
}
switch opcode {
case 0xe6: // "H (absolute horizontal lineTo)"
pen[0] = tmp[0]
case 0xe7: // "h (relative horizontal lineTo)"
pen[0] += tmp[0]
case 0xe8: // "V (absolute vertical lineTo)"
pen[1] = tmp[0]
case 0xe9: // "v (relative vertical lineTo)"
pen[1] += tmp[0]
default:
return nil, nil, nil, errUnsupportedDrawingOpcode
}
u.verbs = append(u.verbs, upgradeVerbLineTo)
u.args = append(u.args, pen)
}
prevSmoothType = smoothTypeNone
}
}
endPath:
v1, retErr = u.finishDrawing(v1, startingPoint)
return upgradeStyling, v1, v0, retErr
}
func (u *upgrader) finishDrawing(v1 buffer, startingPoint [2]float32) (newV1 buffer, retErr error) {
v1.encodeCoordinatePairFFV1(u.args[0])
for i, j := 1, 1; i < len(u.verbs); {
curr := u.args[j-1]
runLength := u.computeRunLength(u.verbs[i:])
verb := u.verbs[i]
if verb == upgradeVerbMoveTo {
v1 = append(v1, 0x35) // FFV1 MoveTo.
v1.encodeCoordinatePairFFV1(u.args[j])
i += 1
j += 1
continue
}
switch verb {
case upgradeVerbLineTo:
if ((runLength == 3) && ((j + 3) == len(u.args)) && u.looksLikeParallelogram3(&curr, u.args[j:], &startingPoint)) ||
((runLength == 4) && u.looksLikeParallelogram4(&curr, u.args[j:j+4])) {
v1 = append(v1, 0x34) // FFV1 Parallelogram.
v1.encodeCoordinatePairFFV1(u.args[j+0])
v1.encodeCoordinatePairFFV1(u.args[j+1])
i += 4
j += 4 * 1
continue
}
case upgradeVerbCubeTo:
if (runLength == 4) && u.looksLikeEllipse(&curr, u.args[j:j+(4*3)]) {
v1 = append(v1, 0x33) // FFV1 Ellipse (4 quarters).
v1.encodeCoordinatePairFFV1(u.args[j+2])
v1.encodeCoordinatePairFFV1(u.args[j+5])
i += 4
j += 4 * 3
continue
}
}
opcodeBase := 0x10 * (verb - 1) // FFV1 LineTo / QuadTo / CubeTo.
if runLength < 16 {
v1 = append(v1, opcodeBase|uint8(runLength))
} else {
v1 = append(v1, opcodeBase)
v1.encodeNaturalFFV1(uint32(runLength) - 16)
}
args := u.args[j : j+(runLength*int(verb))]
for _, arg := range args {
v1.encodeCoordinatePairFFV1(arg)
}
i += runLength
j += len(args)
}
return u.emitFill(v1)
}
func (u *upgrader) emitFill(v1 buffer) (newV1 buffer, retErr error) {
switch c := u.creg[u.fill]; c.typ {
case ColorTypeRGBA:
if validAlphaPremulColor(c.rgba) {
if !u.hasRegsSel7 || (u.regsSel7 != c.rgba) {
u.hasRegsSel7, u.regsSel7 = true, c.rgba
v1 = append(v1, 0x57, // FFV1 Set REGS[SEL+7].hi32.
c.rgba.R, c.rgba.G, c.rgba.B, c.rgba.A)
}
v1 = append(v1, 0x87) // FFV1 Fill (flat color) with REGS[SEL+7].
} else if (c.rgba.A == 0) && (c.rgba.B&0x80 != 0) {
nStops := int(c.rgba.R & 63)
cBase := int(c.rgba.G & 63)
nBase := int(c.rgba.B & 63)
if nStops < 2 {
return nil, errInvalidColor
} else if nStops > 17 {
return nil, errUnsupportedUpgrade
}
v1 = append(v1, 0x70|uint8(nStops-2)) // FFV1 SEL -= N; Set REGS[SEL+1 .. SEL+1+N].
for i := 0; i < nStops; i++ {
if stopOffset := u.nreg[(nBase+i)&63]; stopOffset <= 0 {
v1 = append(v1, 0x00, 0x00, 0x00, 0x00)
} else if stopOffset < 1 {
u := uint32(stopOffset * 0x10000)
v1 = append(v1, uint8(u>>0), uint8(u>>8), uint8(u>>16), uint8(u>>24))
} else {
v1 = append(v1, 0x00, 0x00, 0x01, 0x00)
}
if stopColor := u.creg[(cBase+i)&63]; stopColor.typ != ColorTypeRGBA {
return nil, errUnsupportedUpgrade
} else {
v1 = append(v1,
stopColor.rgba.R,
stopColor.rgba.G,
stopColor.rgba.B,
stopColor.rgba.A,
)
}
}
nMatrixElements := 0
if c.rgba.B&0x40 == 0 {
v1 = append(v1, 0x91, // FFV1 Fill (linear gradient) with REGS[SEL+1 .. SEL+1+N].
(c.rgba.G&0xc0)|uint8(nStops-2))
nMatrixElements = 3
} else {
v1 = append(v1, 0xa1, // FFV1 Fill (radial gradient) with REGS[SEL+1 .. SEL+1+N].
(c.rgba.G&0xc0)|uint8(nStops-2))
nMatrixElements = 6
}
for i := 0; i < nMatrixElements; i++ {
u := math.Float32bits(u.nreg[(nBase+i-6)&63])
v1 = append(v1, uint8(u>>0), uint8(u>>8), uint8(u>>16), uint8(u>>24))
}
v1 = append(v1, 0x36, // FFV1 SEL += N.
uint8(nStops))
} else {
return nil, errInvalidColor
}
case ColorTypePaletteIndex:
if c.paletteIndex < 7 {
v1 = append(v1, 0x88+c.paletteIndex) // FFV1 Fill (flat color) with REGS[SEL+8+N].
} else {
v1 = append(v1, 0x56, // FFV1 Set REGS[SEL+6].hi32.
0x80|c.paletteIndex, 0, 0, 0,
0x86) // FFV1 Fill (flat color) with REGS[SEL+6].
}
case ColorTypeBlend:
if c.color0.typ == ColorTypeRGBA {
v1 = append(v1, 0x53, // FFV1 Set REGS[SEL+3].hi32.
c.color0.rgba.R, c.color0.rgba.G, c.color0.rgba.B, c.color0.rgba.A)
}
if c.color1.typ == ColorTypeRGBA {
v1 = append(v1, 0x54, // FFV1 Set REGS[SEL+4].hi32.
c.color1.rgba.R, c.color1.rgba.G, c.color1.rgba.B, c.color1.rgba.A)
}
v1 = append(v1, 0x55, // FFV1 Set REGS[SEL+5].hi32.
c.blend)
if c.color0.typ == ColorTypeRGBA {
v1 = append(v1, 0xfe)
} else {
v1 = append(v1, 0x80|c.color0.paletteIndex)
}
if c.color1.typ == ColorTypeRGBA {
v1 = append(v1, 0xff)
} else {
v1 = append(v1, 0x80|c.color1.paletteIndex)
}
v1 = append(v1, 0, 0x85) // FFV1 Fill (flat color) with REGS[SEL+5].
}
return v1, nil
}
func (u *upgrader) computeRunLength(verbs []uint8) int {
firstVerb := verbs[0]
if firstVerb == 0 {
return 1
}
n := 1
for ; (n < len(verbs)) && (verbs[n] == firstVerb); n++ {
}
return n
}
// looksLikeParallelogram3 is like looksLikeParallelogram4 but the final point
// (implied by the ClosePath op) is separate from the middle 3 args.
func (u *upgrader) looksLikeParallelogram3(curr *[2]float32, args [][2]float32, final *[2]float32) bool {
if len(args) != 3 {
panic("unreachable")
}
return (*curr == *final) &&
(curr[0] == (args[0][0] - args[1][0] + args[2][0])) &&
(curr[1] == (args[0][1] - args[1][1] + args[2][1]))
}
// looksLikeParallelogram4 returns whether the 5 coordinate pairs (A, B, C, D,
// E) form a parallelogram:
//
// E=A B
//
// o---------o
// \ \
// \ \
// \ \
// o---------o
// D C
//
// Specifically, it checks that (A == E) and ((A - B) == (D - C)). That last
// equation can be rearranged as (A == (B - C + D)).
//
// The motivation is that, if looksLikeParallelogram4 is true, then the 5 input
// coordinate pairs can then be compressed to 3: A, B and C. Or, if the current
// point A is implied by context then 4 input pairs can be compressed to 2.
func (u *upgrader) looksLikeParallelogram4(curr *[2]float32, args [][2]float32) bool {
if len(args) != 4 {
panic("unreachable")
}
return (*curr == args[3]) &&
(curr[0] == (args[0][0] - args[1][0] + args[2][0])) &&
(curr[1] == (args[0][1] - args[1][1] + args[2][1]))
}
// looksLikeEllipse returns whether the 13 coordinate pairs (A, A+, B-, B, B+,
// C- C, C+, D-, D, D+, A-, E) form a cubic Bézier approximation to an ellipse.
// Let A± denote the two tangent vectors (A+ - A) and (A - A-) and likewise for
// B±, C± and D±.
//
// A+ B-
//
// E=A o o B
// A- o---------o B+
//
// o \ \ o
// \ X \
// o \ \ o
// D+ o---------o C-
// D o o C
// D- C+
//
// See https://nigeltao.github.io/blog/2021/three-points-define-ellipse.html
// for a better version of that ASCII art.
//
// Specifically, it checks that (A, B, C, D, E), also known as (*curr, args[2],
// args[5], args[8] and args[11]), forms a parallelogram. If so, let X be the
// parallelogram center and define two axis vectors: r = B-X and s = C-X.
//
// These axes define the parallelogram's or ellipse's shape but they are not
// necessarily orthogonal and hence not necessarily the ellipse's major
// (longest) and minor (shortest) axes. If s is a 90 degree rotation of r then
// the parallelogram is a square and the ellipse is a circle.
//
// This function further checks that the A±, B± C± and D± tangents are
// approximately equal to +λ×r, +λ×s, -λ×r and -λ×s, where λ = ((math.Sqrt2 -
// 1) × 4 / 3) comes from the cubic Bézier approximation to a quarter-circle.
//
// The motivation is that, if looksLikeEllipse is true, then the 13 input
// coordinate pairs can then be compressed to 3: A, B and C. Or, if the current
// point A is implied by context then 12 input pairs can be compressed to 2.
func (u *upgrader) looksLikeEllipse(curr *[2]float32, args [][2]float32) bool {
if len(args) != 12 {
panic("unreachable")
}
if (*curr != args[11]) ||
(curr[0] != (args[2][0] - args[5][0] + args[8][0])) ||
(curr[1] != (args[2][1] - args[5][1] + args[8][1])) {
return false
}
center := [2]float32{
(args[2][0] + args[8][0]) / 2,
(args[2][1] + args[8][1]) / 2,
}
// 0.5522847498307933984022516322796 ≈ ((math.Sqrt2 - 1) × 4 / 3), the
// tangent lengths (as a fraction of the radius) for a commonly used cubic
// Bézier approximation to a circle. Multiplying that by 0.98 and 1.02
// checks that we're within 2% of that fraction.
//
// This also covers the slightly different 0.551784777779014 constant,
// recommended by https://pomax.github.io/bezierinfo/#circles_cubic
const λMin = 0.98 * 0.5522847498307933984022516322796
const λMax = 1.02 * 0.5522847498307933984022516322796
// Check the first axis.
r := [2]float32{
args[2][0] - center[0],
args[2][1] - center[1],
}
rMin := [2]float32{r[0] * λMin, r[1] * λMin}
rMax := [2]float32{r[0] * λMax, r[1] * λMax}
if rMin[0] > rMax[0] {
rMin[0], rMax[0] = rMax[0], rMin[0]
}
if rMin[1] > rMax[1] {
rMin[1], rMax[1] = rMax[1], rMin[1]
}
if !within(args[0][0]-curr[0], args[0][1]-curr[1], rMin, rMax) ||
!within(args[4][0]-args[5][0], args[4][1]-args[5][1], rMin, rMax) ||
!within(args[5][0]-args[6][0], args[5][1]-args[6][1], rMin, rMax) ||
!within(args[11][0]-args[10][0], args[11][1]-args[10][1], rMin, rMax) {
return false
}
// Check the second axis.
s := [2]float32{
args[5][0] - center[0],
args[5][1] - center[1],
}
sMin := [2]float32{s[0] * λMin, s[1] * λMin}
sMax := [2]float32{s[0] * λMax, s[1] * λMax}
if sMin[0] > sMax[0] {
sMin[0], sMax[0] = sMax[0], sMin[0]
}
if sMin[1] > sMax[1] {
sMin[1], sMax[1] = sMax[1], sMin[1]
}
if !within(args[2][0]-args[1][0], args[2][1]-args[1][1], sMin, sMax) ||
!within(args[3][0]-args[2][0], args[3][1]-args[2][1], sMin, sMax) ||
!within(args[7][0]-args[8][0], args[7][1]-args[8][1], sMin, sMax) ||
!within(args[8][0]-args[9][0], args[8][1]-args[9][1], sMin, sMax) {
return false
}
return true
}
func within(v0 float32, v1 float32, min [2]float32, max [2]float32) bool {
return (min[0] <= v0) && (v0 <= max[0]) && (min[1] <= v1) && (v1 <= max[1])
}
func (u *upgrader) upgradeArcs(pen *[2]float32, v1 buffer, v0 buffer) (newV1 buffer, newV0 buffer, retErr error) {
coords := [6]float32{}
largeArc, sweep := false, false
opcode := v0[0]
v0 = v0[1:]
nReps := 1 + int(opcode&0x0f)
for i := 0; i < nReps; i++ {
v0, retErr = decodeCoordinates(coords[:2], nil, v0)
if retErr != nil {
return nil, nil, retErr
}
coords[2], v0, retErr = decodeAngle(nil, v0)
if retErr != nil {
return nil, nil, retErr
}
largeArc, sweep, v0, retErr = decodeArcToFlags(nil, v0)
if retErr != nil {
return nil, nil, retErr
}
v0, retErr = decodeCoordinates(coords[4:6], nil, v0)
if retErr != nil {
return nil, nil, retErr
}
if (opcode >> 4) == 0x0d {
coords[4] += pen[0]
coords[5] += pen[1]
}
u.upgradeArc(pen, coords[0], coords[1], coords[2], largeArc, sweep, coords[4], coords[5])
pen[0] = coords[4]
pen[1] = coords[5]
}
return v1, v0, nil
}
func (u *upgrader) upgradeArc(pen *[2]float32, rx, ry, xAxisRotation float32, largeArc, sweep bool, finalX, finalY float32) {
// We follow the "Conversion from endpoint to center parameterization"
// algorithm as per
// https://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
// There seems to be a bug in the spec's "implementation notes".
//
// Actual implementations, such as
// - https://git.gnome.org/browse/librsvg/tree/rsvg-path.c
// - http://svn.apache.org/repos/asf/xmlgraphics/batik/branches/svg11/sources/org/apache/batik/ext/awt/geom/ExtendedGeneralPath.java
// - https://java.net/projects/svgsalamander/sources/svn/content/trunk/svg-core/src/main/java/com/kitfox/svg/pathcmd/Arc.java
// - https://github.com/millermedeiros/SVGParser/blob/master/com/millermedeiros/geom/SVGArc.as
// do something slightly different (marked with a †).
// (†) The Abs isn't part of the spec. Neither is checking that Rx and Ry
// are non-zero (and non-NaN).
Rx := math.Abs(float64(rx))
Ry := math.Abs(float64(ry))
if !(Rx > 0 && Ry > 0) {
u.verbs = append(u.verbs, upgradeVerbLineTo)
u.args = append(u.args, [2]float32{finalX, finalY})
return
}
x1 := float64(pen[0])
y1 := float64(pen[1])
x2 := float64(finalX)
y2 := float64(finalY)
phi := 2 * math.Pi * float64(xAxisRotation)
// Step 1: Compute (x1′, y1′)
halfDx := (x1 - x2) / 2
halfDy := (y1 - y2) / 2
cosPhi := math.Cos(phi)
sinPhi := math.Sin(phi)
x1Prime := +cosPhi*halfDx + sinPhi*halfDy
y1Prime := -sinPhi*halfDx + cosPhi*halfDy
// Step 2: Compute (cx′, cy′)
rxSq := Rx * Rx
rySq := Ry * Ry
x1PrimeSq := x1Prime * x1Prime
y1PrimeSq := y1Prime * y1Prime
// (†) Check that the radii are large enough.
radiiCheck := x1PrimeSq/rxSq + y1PrimeSq/rySq
if radiiCheck > 1 {
c := math.Sqrt(radiiCheck)
Rx *= c
Ry *= c
rxSq = Rx * Rx
rySq = Ry * Ry
}
denom := rxSq*y1PrimeSq + rySq*x1PrimeSq
step2 := 0.0
if a := rxSq*rySq/denom - 1; a > 0 {
step2 = math.Sqrt(a)
}
if largeArc == sweep {
step2 = -step2
}
cxPrime := +step2 * Rx * y1Prime / Ry
cyPrime := -step2 * Ry * x1Prime / Rx
// Step 3: Compute (cx, cy) from (cx′, cy′)
cx := +cosPhi*cxPrime - sinPhi*cyPrime + (x1+x2)/2
cy := +sinPhi*cxPrime + cosPhi*cyPrime + (y1+y2)/2
// Step 4: Compute θ1 and Δθ
ax := (+x1Prime - cxPrime) / Rx
ay := (+y1Prime - cyPrime) / Ry
bx := (-x1Prime - cxPrime) / Rx
by := (-y1Prime - cyPrime) / Ry
theta1 := angle(1, 0, ax, ay)
deltaTheta := angle(ax, ay, bx, by)
if sweep {
if deltaTheta < 0 {
deltaTheta += 2 * math.Pi
}
} else {
if deltaTheta > 0 {
deltaTheta -= 2 * math.Pi
}
}
// This ends the
// https://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
// algorithm. What follows below is specific to this implementation.
// We approximate an arc by one or more cubic Bézier curves.
n := int(math.Ceil(math.Abs(deltaTheta) / (math.Pi/2 + 0.001)))
for i := 0; i < n; i++ {
u.arcSegmentTo(cx, cy,
theta1+deltaTheta*float64(i+0)/float64(n),
theta1+deltaTheta*float64(i+1)/float64(n),
Rx, Ry, cosPhi, sinPhi,
)
}
}
// arcSegmentTo approximates an arc by a cubic Bézier curve. The mathematical
// formulae for the control points are the same as that used by librsvg.
func (u *upgrader) arcSegmentTo(cx, cy, theta1, theta2, rx, ry, cosPhi, sinPhi float64) {
halfDeltaTheta := (theta2 - theta1) * 0.5
q := math.Sin(halfDeltaTheta * 0.5)
t := (8 * q * q) / (3 * math.Sin(halfDeltaTheta))
cos1 := math.Cos(theta1)
sin1 := math.Sin(theta1)
cos2 := math.Cos(theta2)
sin2 := math.Sin(theta2)
x1 := rx * (+cos1 - t*sin1)
y1 := ry * (+sin1 + t*cos1)
x2 := rx * (+cos2 + t*sin2)
y2 := ry * (+sin2 - t*cos2)
x3 := rx * (+cos2)
y3 := ry * (+sin2)
highResolutionCoordinates := u.opts.ArcsExpandWithHighResolutionCoordinates
u.verbs = append(u.verbs, upgradeVerbCubeTo)
u.args = append(u.args,
[2]float32{
quantize(float32(cx+cosPhi*x1-sinPhi*y1), highResolutionCoordinates),
quantize(float32(cy+sinPhi*x1+cosPhi*y1), highResolutionCoordinates),
},
[2]float32{
quantize(float32(cx+cosPhi*x2-sinPhi*y2), highResolutionCoordinates),
quantize(float32(cy+sinPhi*x2+cosPhi*y2), highResolutionCoordinates),
},
[2]float32{
quantize(float32(cx+cosPhi*x3-sinPhi*y3), highResolutionCoordinates),
quantize(float32(cy+sinPhi*x3+cosPhi*y3), highResolutionCoordinates),
},
)
}
func countFFV1Instructions(src buffer) (ret uint64) {
for len(src) > 0 {
ret++
opcode := src[0]
src = src[1:]
switch {
case opcode < 0x40:
switch {
case opcode < 0x30:
nReps := uint32(opcode & 15)
if nReps == 0 {
n := 0
nReps, n = src.decodeNaturalFFV1()
src = src[n:]
nReps += 16
}
nCoords := 2 * (1 + int(opcode>>4))
for ; nReps > 0; nReps-- {
for i := 0; i < nCoords; i++ {
_, n := src.decodeNaturalFFV1()
src = src[n:]
}
}
case opcode < 0x35:
for i := 0; i < 4; i++ {
_, n := src.decodeNaturalFFV1()
src = src[n:]
}
case opcode == 0x35:
for i := 0; i < 2; i++ {
_, n := src.decodeNaturalFFV1()
src = src[n:]
}
case opcode == 0x36:
src = src[1:]
case opcode == 0x37:
// No-op.
default:
// upgradeBytecode (with calculatingJumpLOD set) will not emit
// jump or call instructions.
panic("unexpected FFV1 instruction")
}
case opcode < 0x80:
switch (opcode >> 4) & 3 {
case 0, 1:
src = src[4:]
case 2:
src = src[8:]
default:
src = src[8*(2+int(opcode&15)):]
}
case opcode < 0xc0:
switch (opcode >> 4) & 3 {
case 0:
// No-op.
case 1:
src = src[13:]
case 2:
src = src[25:]
default:
// upgradeBytecode (with calculatingJumpLOD set) will not emit
// reserved instructions.
panic("unexpected FFV1 instruction")
}
default:
// upgradeBytecode (with calculatingJumpLOD set) will not emit
// reserved instructions.
panic("unexpected FFV1 instruction")
}
}
return ret
}
type upgradeColor struct {
typ ColorType
paletteIndex uint8
blend uint8
rgba color.RGBA
color0 *upgradeColor
color1 *upgradeColor
}
func (u *upgrader) resolve(c Color, denyBlend bool) (upgradeColor, error) {
switch c.typ {
case ColorTypeRGBA:
return upgradeColor{
typ: ColorTypeRGBA,
rgba: c.data,
}, nil
case ColorTypePaletteIndex:
return upgradeColor{
typ: ColorTypePaletteIndex,
paletteIndex: c.paletteIndex(),
}, nil
case ColorTypeCReg:
upgrade := u.creg[c.cReg()]
if denyBlend && (upgrade.typ == ColorTypeBlend) {
return upgradeColor{}, errUnsupportedUpgrade
}
return upgrade, nil
}
if denyBlend {
return upgradeColor{}, errUnsupportedUpgrade
}
t, c0, c1 := c.blend()
color0, err := u.resolve(decodeColor1(c0), true)
if err != nil {
return upgradeColor{}, err
}
color1, err := u.resolve(decodeColor1(c1), true)
if err != nil {
return upgradeColor{}, err
}
return upgradeColor{
typ: ColorTypeBlend,
blend: t,
color0: &color0,
color1: &color1,
}, nil
}
|