1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
|
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by "gen.bash" from internal/trace; DO NOT EDIT.
//go:build go1.23
package trace
import (
"fmt"
"iter"
"math"
"strconv"
"strings"
"time"
"golang.org/x/exp/trace/internal/tracev2"
"golang.org/x/exp/trace/internal/version"
)
// EventKind indicates the kind of event this is.
//
// Use this information to obtain a more specific event that
// allows access to more detailed information.
type EventKind uint16
const (
EventBad EventKind = iota
// EventKindSync is an event that indicates a global synchronization
// point in the trace. At the point of a sync event, the
// trace reader can be certain that all resources (e.g. threads,
// goroutines) that have existed until that point have been enumerated.
EventSync
// EventMetric is an event that represents the value of a metric at
// a particular point in time.
EventMetric
// EventLabel attaches a label to a resource.
EventLabel
// EventStackSample represents an execution sample, indicating what a
// thread/proc/goroutine was doing at a particular point in time via
// its backtrace.
//
// Note: Samples should be considered a close approximation of
// what a thread/proc/goroutine was executing at a given point in time.
// These events may slightly contradict the situation StateTransitions
// describe, so they should only be treated as a best-effort annotation.
EventStackSample
// EventRangeBegin and EventRangeEnd are a pair of generic events representing
// a special range of time. Ranges are named and scoped to some resource
// (identified via ResourceKind). A range that has begun but has not ended
// is considered active.
//
// EvRangeBegin and EvRangeEnd will share the same name, and an End will always
// follow a Begin on the same instance of the resource. The associated
// resource ID can be obtained from the Event. ResourceNone indicates the
// range is globally scoped. That is, any goroutine/proc/thread can start or
// stop, but only one such range may be active at any given time.
//
// EventRangeActive is like EventRangeBegin, but indicates that the range was
// already active. In this case, the resource referenced may not be in the current
// context.
EventRangeBegin
EventRangeActive
EventRangeEnd
// EvTaskBegin and EvTaskEnd are a pair of events representing a runtime/trace.Task.
EventTaskBegin
EventTaskEnd
// EventRegionBegin and EventRegionEnd are a pair of events represent a runtime/trace.Region.
EventRegionBegin
EventRegionEnd
// EventLog represents a runtime/trace.Log call.
EventLog
// EventStateTransition represents a state change for some resource.
EventStateTransition
// EventExperimental is an experimental event that is unvalidated and exposed in a raw form.
// Users are expected to understand the format and perform their own validation. These events
// may always be safely ignored.
EventExperimental
)
// String returns a string form of the EventKind.
func (e EventKind) String() string {
if int(e) >= len(eventKindStrings) {
return eventKindStrings[0]
}
return eventKindStrings[e]
}
var eventKindStrings = [...]string{
EventBad: "Bad",
EventSync: "Sync",
EventMetric: "Metric",
EventLabel: "Label",
EventStackSample: "StackSample",
EventRangeBegin: "RangeBegin",
EventRangeActive: "RangeActive",
EventRangeEnd: "RangeEnd",
EventTaskBegin: "TaskBegin",
EventTaskEnd: "TaskEnd",
EventRegionBegin: "RegionBegin",
EventRegionEnd: "RegionEnd",
EventLog: "Log",
EventStateTransition: "StateTransition",
EventExperimental: "Experimental",
}
const maxTime = Time(math.MaxInt64)
// Time is a timestamp in nanoseconds.
//
// It corresponds to the monotonic clock on the platform that the
// trace was taken, and so is possible to correlate with timestamps
// for other traces taken on the same machine using the same clock
// (i.e. no reboots in between).
//
// The actual absolute value of the timestamp is only meaningful in
// relation to other timestamps from the same clock.
//
// BUG: Timestamps coming from traces on Windows platforms are
// only comparable with timestamps from the same trace. Timestamps
// across traces cannot be compared, because the system clock is
// not used as of Go 1.22.
//
// BUG: Traces produced by Go versions 1.21 and earlier cannot be
// compared with timestamps from other traces taken on the same
// machine. This is because the system clock was not used at all
// to collect those timestamps.
type Time int64
// Sub subtracts t0 from t, returning the duration in nanoseconds.
func (t Time) Sub(t0 Time) time.Duration {
return time.Duration(int64(t) - int64(t0))
}
// Metric provides details about a Metric event.
type Metric struct {
// Name is the name of the sampled metric.
//
// Names follow the same convention as metric names in the
// runtime/metrics package, meaning they include the unit.
// Names that match with the runtime/metrics package represent
// the same quantity. Note that this corresponds to the
// runtime/metrics package for the Go version this trace was
// collected for.
Name string
// Value is the sampled value of the metric.
//
// The Value's Kind is tied to the name of the metric, and so is
// guaranteed to be the same for metric samples for the same metric.
Value Value
}
// Label provides details about a Label event.
type Label struct {
// Label is the label applied to some resource.
Label string
// Resource is the resource to which this label should be applied.
Resource ResourceID
}
// Range provides details about a Range event.
type Range struct {
// Name is a human-readable name for the range.
//
// This name can be used to identify the end of the range for the resource
// its scoped to, because only one of each type of range may be active on
// a particular resource. The relevant resource should be obtained from the
// Event that produced these details. The corresponding RangeEnd will have
// an identical name.
Name string
// Scope is the resource that the range is scoped to.
//
// For example, a ResourceGoroutine scope means that the same goroutine
// must have a start and end for the range, and that goroutine can only
// have one range of a particular name active at any given time. The
// ID that this range is scoped to may be obtained via Event.Goroutine.
//
// The ResourceNone scope means that the range is globally scoped. As a
// result, any goroutine/proc/thread may start or end the range, and only
// one such named range may be active globally at any given time.
//
// For RangeBegin and RangeEnd events, this will always reference some
// resource ID in the current execution context. For RangeActive events,
// this may reference a resource not in the current context. Prefer Scope
// over the current execution context.
Scope ResourceID
}
// RangeAttributes provides attributes about a completed Range.
type RangeAttribute struct {
// Name is the human-readable name for the range.
Name string
// Value is the value of the attribute.
Value Value
}
// TaskID is the internal ID of a task used to disambiguate tasks (even if they
// are of the same type).
type TaskID uint64
const (
// NoTask indicates the lack of a task.
NoTask = TaskID(^uint64(0))
// BackgroundTask is the global task that events are attached to if there was
// no other task in the context at the point the event was emitted.
BackgroundTask = TaskID(0)
)
// Task provides details about a Task event.
type Task struct {
// ID is a unique identifier for the task.
//
// This can be used to associate the beginning of a task with its end.
ID TaskID
// ParentID is the ID of the parent task.
Parent TaskID
// Type is the taskType that was passed to runtime/trace.NewTask.
//
// May be "" if a task's TaskBegin event isn't present in the trace.
Type string
}
// Region provides details about a Region event.
type Region struct {
// Task is the ID of the task this region is associated with.
Task TaskID
// Type is the regionType that was passed to runtime/trace.StartRegion or runtime/trace.WithRegion.
Type string
}
// Log provides details about a Log event.
type Log struct {
// Task is the ID of the task this region is associated with.
Task TaskID
// Category is the category that was passed to runtime/trace.Log or runtime/trace.Logf.
Category string
// Message is the message that was passed to runtime/trace.Log or runtime/trace.Logf.
Message string
}
// Stack represents a stack. It's really a handle to a stack and it's trivially comparable.
//
// If two Stacks are equal then their Frames are guaranteed to be identical. If they are not
// equal, however, their Frames may still be equal.
type Stack struct {
table *evTable
id stackID
}
// Frames is an iterator over the frames in a Stack.
func (s Stack) Frames() iter.Seq[StackFrame] {
return func(yield func(StackFrame) bool) {
if s.id == 0 {
return
}
stk := s.table.stacks.mustGet(s.id)
for _, pc := range stk.pcs {
f := s.table.pcs[pc]
sf := StackFrame{
PC: f.pc,
Func: s.table.strings.mustGet(f.funcID),
File: s.table.strings.mustGet(f.fileID),
Line: f.line,
}
if !yield(sf) {
return
}
}
}
}
// NoStack is a sentinel value that can be compared against any Stack value, indicating
// a lack of a stack trace.
var NoStack = Stack{}
// StackFrame represents a single frame of a stack.
type StackFrame struct {
// PC is the program counter of the function call if this
// is not a leaf frame. If it's a leaf frame, it's the point
// at which the stack trace was taken.
PC uint64
// Func is the name of the function this frame maps to.
Func string
// File is the file which contains the source code of Func.
File string
// Line is the line number within File which maps to PC.
Line uint64
}
// ExperimentalEvent presents a raw view of an experimental event's arguments and their names.
type ExperimentalEvent struct {
// Name is the name of the event.
Name string
// Experiment is the name of the experiment this event is a part of.
Experiment string
// Args lists the names of the event's arguments in order.
Args []string
// argValues contains the raw integer arguments which are interpreted
// by ArgValue using table.
table *evTable
argValues []uint64
}
// ArgValue returns a typed Value for the i'th argument in the experimental event.
func (e ExperimentalEvent) ArgValue(i int) Value {
if i < 0 || i >= len(e.Args) {
panic(fmt.Sprintf("experimental event argument index %d out of bounds [0, %d)", i, len(e.Args)))
}
if strings.HasSuffix(e.Args[i], "string") {
s := e.table.strings.mustGet(stringID(e.argValues[i]))
return stringValue(s)
}
return uint64Value(e.argValues[i])
}
// ExperimentalBatch represents a packet of unparsed data along with metadata about that packet.
type ExperimentalBatch struct {
// Thread is the ID of the thread that produced a packet of data.
Thread ThreadID
// Data is a packet of unparsed data all produced by one thread.
Data []byte
}
// Event represents a single event in the trace.
type Event struct {
table *evTable
ctx schedCtx
base baseEvent
}
// Kind returns the kind of event that this is.
func (e Event) Kind() EventKind {
return tracev2Type2Kind[e.base.typ]
}
// Time returns the timestamp of the event.
func (e Event) Time() Time {
return e.base.time
}
// Goroutine returns the ID of the goroutine that was executing when
// this event happened. It describes part of the execution context
// for this event.
//
// Note that for goroutine state transitions this always refers to the
// state before the transition. For example, if a goroutine is just
// starting to run on this thread and/or proc, then this will return
// NoGoroutine. In this case, the goroutine starting to run will be
// can be found at Event.StateTransition().Resource.
func (e Event) Goroutine() GoID {
return e.ctx.G
}
// Proc returns the ID of the proc this event event pertains to.
//
// Note that for proc state transitions this always refers to the
// state before the transition. For example, if a proc is just
// starting to run on this thread, then this will return NoProc.
func (e Event) Proc() ProcID {
return e.ctx.P
}
// Thread returns the ID of the thread this event pertains to.
//
// Note that for thread state transitions this always refers to the
// state before the transition. For example, if a thread is just
// starting to run, then this will return NoThread.
//
// Note: tracking thread state is not currently supported, so this
// will always return a valid thread ID. However thread state transitions
// may be tracked in the future, and callers must be robust to this
// possibility.
func (e Event) Thread() ThreadID {
return e.ctx.M
}
// Stack returns a handle to a stack associated with the event.
//
// This represents a stack trace at the current moment in time for
// the current execution context.
func (e Event) Stack() Stack {
if e.base.typ == evSync {
return NoStack
}
if e.base.typ == tracev2.EvCPUSample {
return Stack{table: e.table, id: stackID(e.base.args[0])}
}
spec := tracev2.Specs()[e.base.typ]
if len(spec.StackIDs) == 0 {
return NoStack
}
// The stack for the main execution context is always the
// first stack listed in StackIDs. Subtract one from this
// because we've peeled away the timestamp argument.
id := stackID(e.base.args[spec.StackIDs[0]-1])
if id == 0 {
return NoStack
}
return Stack{table: e.table, id: id}
}
// Metric returns details about a Metric event.
//
// Panics if Kind != EventMetric.
func (e Event) Metric() Metric {
if e.Kind() != EventMetric {
panic("Metric called on non-Metric event")
}
var m Metric
switch e.base.typ {
case tracev2.EvProcsChange:
m.Name = "/sched/gomaxprocs:threads"
m.Value = uint64Value(e.base.args[0])
case tracev2.EvHeapAlloc:
m.Name = "/memory/classes/heap/objects:bytes"
m.Value = uint64Value(e.base.args[0])
case tracev2.EvHeapGoal:
m.Name = "/gc/heap/goal:bytes"
m.Value = uint64Value(e.base.args[0])
default:
panic(fmt.Sprintf("internal error: unexpected wire-format event type for Metric kind: %d", e.base.typ))
}
return m
}
// Label returns details about a Label event.
//
// Panics if Kind != EventLabel.
func (e Event) Label() Label {
if e.Kind() != EventLabel {
panic("Label called on non-Label event")
}
if e.base.typ != tracev2.EvGoLabel {
panic(fmt.Sprintf("internal error: unexpected wire-format event type for Label kind: %d", e.base.typ))
}
return Label{
Label: e.table.strings.mustGet(stringID(e.base.args[0])),
Resource: ResourceID{Kind: ResourceGoroutine, id: int64(e.ctx.G)},
}
}
// Range returns details about an EventRangeBegin, EventRangeActive, or EventRangeEnd event.
//
// Panics if Kind != EventRangeBegin, Kind != EventRangeActive, and Kind != EventRangeEnd.
func (e Event) Range() Range {
if kind := e.Kind(); kind != EventRangeBegin && kind != EventRangeActive && kind != EventRangeEnd {
panic("Range called on non-Range event")
}
var r Range
switch e.base.typ {
case tracev2.EvSTWBegin, tracev2.EvSTWEnd:
// N.B. ordering.advance smuggles in the STW reason as e.base.args[0]
// for tracev2.EvSTWEnd (it's already there for Begin).
r.Name = "stop-the-world (" + e.table.strings.mustGet(stringID(e.base.args[0])) + ")"
r.Scope = ResourceID{Kind: ResourceGoroutine, id: int64(e.Goroutine())}
case tracev2.EvGCBegin, tracev2.EvGCActive, tracev2.EvGCEnd:
r.Name = "GC concurrent mark phase"
r.Scope = ResourceID{Kind: ResourceNone}
case tracev2.EvGCSweepBegin, tracev2.EvGCSweepActive, tracev2.EvGCSweepEnd:
r.Name = "GC incremental sweep"
r.Scope = ResourceID{Kind: ResourceProc}
if e.base.typ == tracev2.EvGCSweepActive {
r.Scope.id = int64(e.base.args[0])
} else {
r.Scope.id = int64(e.Proc())
}
case tracev2.EvGCMarkAssistBegin, tracev2.EvGCMarkAssistActive, tracev2.EvGCMarkAssistEnd:
r.Name = "GC mark assist"
r.Scope = ResourceID{Kind: ResourceGoroutine}
if e.base.typ == tracev2.EvGCMarkAssistActive {
r.Scope.id = int64(e.base.args[0])
} else {
r.Scope.id = int64(e.Goroutine())
}
default:
panic(fmt.Sprintf("internal error: unexpected wire-event type for Range kind: %d", e.base.typ))
}
return r
}
// RangeAttributes returns attributes for a completed range.
//
// Panics if Kind != EventRangeEnd.
func (e Event) RangeAttributes() []RangeAttribute {
if e.Kind() != EventRangeEnd {
panic("Range called on non-Range event")
}
if e.base.typ != tracev2.EvGCSweepEnd {
return nil
}
return []RangeAttribute{
{
Name: "bytes swept",
Value: uint64Value(e.base.args[0]),
},
{
Name: "bytes reclaimed",
Value: uint64Value(e.base.args[1]),
},
}
}
// Task returns details about a TaskBegin or TaskEnd event.
//
// Panics if Kind != EventTaskBegin and Kind != EventTaskEnd.
func (e Event) Task() Task {
if kind := e.Kind(); kind != EventTaskBegin && kind != EventTaskEnd {
panic("Task called on non-Task event")
}
parentID := NoTask
var typ string
switch e.base.typ {
case tracev2.EvUserTaskBegin:
parentID = TaskID(e.base.args[1])
typ = e.table.strings.mustGet(stringID(e.base.args[2]))
case tracev2.EvUserTaskEnd:
parentID = TaskID(e.base.extra(version.Go122)[0])
typ = e.table.getExtraString(extraStringID(e.base.extra(version.Go122)[1]))
default:
panic(fmt.Sprintf("internal error: unexpected wire-format event type for Task kind: %d", e.base.typ))
}
return Task{
ID: TaskID(e.base.args[0]),
Parent: parentID,
Type: typ,
}
}
// Region returns details about a RegionBegin or RegionEnd event.
//
// Panics if Kind != EventRegionBegin and Kind != EventRegionEnd.
func (e Event) Region() Region {
if kind := e.Kind(); kind != EventRegionBegin && kind != EventRegionEnd {
panic("Region called on non-Region event")
}
if e.base.typ != tracev2.EvUserRegionBegin && e.base.typ != tracev2.EvUserRegionEnd {
panic(fmt.Sprintf("internal error: unexpected wire-format event type for Region kind: %d", e.base.typ))
}
return Region{
Task: TaskID(e.base.args[0]),
Type: e.table.strings.mustGet(stringID(e.base.args[1])),
}
}
// Log returns details about a Log event.
//
// Panics if Kind != EventLog.
func (e Event) Log() Log {
if e.Kind() != EventLog {
panic("Log called on non-Log event")
}
if e.base.typ != tracev2.EvUserLog {
panic(fmt.Sprintf("internal error: unexpected wire-format event type for Log kind: %d", e.base.typ))
}
return Log{
Task: TaskID(e.base.args[0]),
Category: e.table.strings.mustGet(stringID(e.base.args[1])),
Message: e.table.strings.mustGet(stringID(e.base.args[2])),
}
}
// StateTransition returns details about a StateTransition event.
//
// Panics if Kind != EventStateTransition.
func (e Event) StateTransition() StateTransition {
if e.Kind() != EventStateTransition {
panic("StateTransition called on non-StateTransition event")
}
var s StateTransition
switch e.base.typ {
case tracev2.EvProcStart:
s = procStateTransition(ProcID(e.base.args[0]), ProcIdle, ProcRunning)
case tracev2.EvProcStop:
s = procStateTransition(e.ctx.P, ProcRunning, ProcIdle)
case tracev2.EvProcSteal:
// N.B. ordering.advance populates e.base.extra.
beforeState := ProcRunning
if tracev2.ProcStatus(e.base.extra(version.Go122)[0]) == tracev2.ProcSyscallAbandoned {
// We've lost information because this ProcSteal advanced on a
// SyscallAbandoned state. Treat the P as idle because ProcStatus
// treats SyscallAbandoned as Idle. Otherwise we'll have an invalid
// transition.
beforeState = ProcIdle
}
s = procStateTransition(ProcID(e.base.args[0]), beforeState, ProcIdle)
case tracev2.EvProcStatus:
// N.B. ordering.advance populates e.base.extra.
s = procStateTransition(ProcID(e.base.args[0]), ProcState(e.base.extra(version.Go122)[0]), tracev2ProcStatus2ProcState[e.base.args[1]])
case tracev2.EvGoCreate, tracev2.EvGoCreateBlocked:
status := GoRunnable
if e.base.typ == tracev2.EvGoCreateBlocked {
status = GoWaiting
}
s = goStateTransition(GoID(e.base.args[0]), GoNotExist, status)
s.Stack = Stack{table: e.table, id: stackID(e.base.args[1])}
case tracev2.EvGoCreateSyscall:
s = goStateTransition(GoID(e.base.args[0]), GoNotExist, GoSyscall)
case tracev2.EvGoStart:
s = goStateTransition(GoID(e.base.args[0]), GoRunnable, GoRunning)
case tracev2.EvGoDestroy:
s = goStateTransition(e.ctx.G, GoRunning, GoNotExist)
case tracev2.EvGoDestroySyscall:
s = goStateTransition(e.ctx.G, GoSyscall, GoNotExist)
case tracev2.EvGoStop:
s = goStateTransition(e.ctx.G, GoRunning, GoRunnable)
s.Reason = e.table.strings.mustGet(stringID(e.base.args[0]))
s.Stack = e.Stack() // This event references the resource the event happened on.
case tracev2.EvGoBlock:
s = goStateTransition(e.ctx.G, GoRunning, GoWaiting)
s.Reason = e.table.strings.mustGet(stringID(e.base.args[0]))
s.Stack = e.Stack() // This event references the resource the event happened on.
case tracev2.EvGoUnblock, tracev2.EvGoSwitch, tracev2.EvGoSwitchDestroy:
// N.B. GoSwitch and GoSwitchDestroy both emit additional events, but
// the first thing they both do is unblock the goroutine they name,
// identically to an unblock event (even their arguments match).
s = goStateTransition(GoID(e.base.args[0]), GoWaiting, GoRunnable)
case tracev2.EvGoSyscallBegin:
s = goStateTransition(e.ctx.G, GoRunning, GoSyscall)
s.Stack = e.Stack() // This event references the resource the event happened on.
case tracev2.EvGoSyscallEnd:
s = goStateTransition(e.ctx.G, GoSyscall, GoRunning)
case tracev2.EvGoSyscallEndBlocked:
s = goStateTransition(e.ctx.G, GoSyscall, GoRunnable)
case tracev2.EvGoStatus, tracev2.EvGoStatusStack:
packedStatus := e.base.args[2]
from, to := packedStatus>>32, packedStatus&((1<<32)-1)
s = goStateTransition(GoID(e.base.args[0]), GoState(from), tracev2GoStatus2GoState[to])
default:
panic(fmt.Sprintf("internal error: unexpected wire-format event type for StateTransition kind: %d", e.base.typ))
}
return s
}
// Sync returns details that are relevant for the following events, up to but excluding the
// next EventSync event.
func (e Event) Sync() Sync {
if e.Kind() != EventSync {
panic("Sync called on non-Sync event")
}
s := Sync{N: int(e.base.args[0])}
if e.table != nil {
expBatches := make(map[string][]ExperimentalBatch)
for exp, batches := range e.table.expBatches {
expBatches[tracev2.Experiments()[exp]] = batches
}
s.ExperimentalBatches = expBatches
if e.table.hasClockSnapshot {
s.ClockSnapshot = &ClockSnapshot{
Trace: e.table.freq.mul(e.table.snapTime),
Wall: e.table.snapWall,
Mono: e.table.snapMono,
}
}
}
return s
}
// Sync contains details potentially relevant to all the following events, up to but excluding
// the next EventSync event.
type Sync struct {
// N indicates that this is the Nth sync event in the trace.
N int
// ClockSnapshot represents a near-simultaneous clock reading of several
// different system clocks. The snapshot can be used as a reference to
// convert timestamps to different clocks, which is helpful for correlating
// timestamps with data captured by other tools. The value is nil for traces
// before go1.25.
ClockSnapshot *ClockSnapshot
// ExperimentalBatches contain all the unparsed batches of data for a given experiment.
ExperimentalBatches map[string][]ExperimentalBatch
}
// ClockSnapshot represents a near-simultaneous clock reading of several
// different system clocks. The snapshot can be used as a reference to convert
// timestamps to different clocks, which is helpful for correlating timestamps
// with data captured by other tools.
type ClockSnapshot struct {
// Trace is a snapshot of the trace clock.
Trace Time
// Wall is a snapshot of the system's wall clock.
Wall time.Time
// Mono is a snapshot of the system's monotonic clock.
Mono uint64
}
// Experimental returns a view of the raw event for an experimental event.
//
// Panics if Kind != EventExperimental.
func (e Event) Experimental() ExperimentalEvent {
if e.Kind() != EventExperimental {
panic("Experimental called on non-Experimental event")
}
spec := tracev2.Specs()[e.base.typ]
argNames := spec.Args[1:] // Skip timestamp; already handled.
return ExperimentalEvent{
Name: spec.Name,
Experiment: tracev2.Experiments()[spec.Experiment],
Args: argNames,
table: e.table,
argValues: e.base.args[:len(argNames)],
}
}
const evSync = ^tracev2.EventType(0)
var tracev2Type2Kind = [...]EventKind{
tracev2.EvCPUSample: EventStackSample,
tracev2.EvProcsChange: EventMetric,
tracev2.EvProcStart: EventStateTransition,
tracev2.EvProcStop: EventStateTransition,
tracev2.EvProcSteal: EventStateTransition,
tracev2.EvProcStatus: EventStateTransition,
tracev2.EvGoCreate: EventStateTransition,
tracev2.EvGoCreateSyscall: EventStateTransition,
tracev2.EvGoStart: EventStateTransition,
tracev2.EvGoDestroy: EventStateTransition,
tracev2.EvGoDestroySyscall: EventStateTransition,
tracev2.EvGoStop: EventStateTransition,
tracev2.EvGoBlock: EventStateTransition,
tracev2.EvGoUnblock: EventStateTransition,
tracev2.EvGoSyscallBegin: EventStateTransition,
tracev2.EvGoSyscallEnd: EventStateTransition,
tracev2.EvGoSyscallEndBlocked: EventStateTransition,
tracev2.EvGoStatus: EventStateTransition,
tracev2.EvSTWBegin: EventRangeBegin,
tracev2.EvSTWEnd: EventRangeEnd,
tracev2.EvGCActive: EventRangeActive,
tracev2.EvGCBegin: EventRangeBegin,
tracev2.EvGCEnd: EventRangeEnd,
tracev2.EvGCSweepActive: EventRangeActive,
tracev2.EvGCSweepBegin: EventRangeBegin,
tracev2.EvGCSweepEnd: EventRangeEnd,
tracev2.EvGCMarkAssistActive: EventRangeActive,
tracev2.EvGCMarkAssistBegin: EventRangeBegin,
tracev2.EvGCMarkAssistEnd: EventRangeEnd,
tracev2.EvHeapAlloc: EventMetric,
tracev2.EvHeapGoal: EventMetric,
tracev2.EvGoLabel: EventLabel,
tracev2.EvUserTaskBegin: EventTaskBegin,
tracev2.EvUserTaskEnd: EventTaskEnd,
tracev2.EvUserRegionBegin: EventRegionBegin,
tracev2.EvUserRegionEnd: EventRegionEnd,
tracev2.EvUserLog: EventLog,
tracev2.EvGoSwitch: EventStateTransition,
tracev2.EvGoSwitchDestroy: EventStateTransition,
tracev2.EvGoCreateBlocked: EventStateTransition,
tracev2.EvGoStatusStack: EventStateTransition,
tracev2.EvSpan: EventExperimental,
tracev2.EvSpanAlloc: EventExperimental,
tracev2.EvSpanFree: EventExperimental,
tracev2.EvHeapObject: EventExperimental,
tracev2.EvHeapObjectAlloc: EventExperimental,
tracev2.EvHeapObjectFree: EventExperimental,
tracev2.EvGoroutineStack: EventExperimental,
tracev2.EvGoroutineStackAlloc: EventExperimental,
tracev2.EvGoroutineStackFree: EventExperimental,
evSync: EventSync,
}
var tracev2GoStatus2GoState = [...]GoState{
tracev2.GoRunnable: GoRunnable,
tracev2.GoRunning: GoRunning,
tracev2.GoWaiting: GoWaiting,
tracev2.GoSyscall: GoSyscall,
}
var tracev2ProcStatus2ProcState = [...]ProcState{
tracev2.ProcRunning: ProcRunning,
tracev2.ProcIdle: ProcIdle,
tracev2.ProcSyscall: ProcRunning,
tracev2.ProcSyscallAbandoned: ProcIdle,
}
// String returns the event as a human-readable string.
//
// The format of the string is intended for debugging and is subject to change.
func (e Event) String() string {
var sb strings.Builder
fmt.Fprintf(&sb, "M=%d P=%d G=%d", e.Thread(), e.Proc(), e.Goroutine())
fmt.Fprintf(&sb, " %s Time=%d", e.Kind(), e.Time())
// Kind-specific fields.
switch kind := e.Kind(); kind {
case EventMetric:
m := e.Metric()
v := m.Value.String()
if m.Value.Kind() == ValueString {
v = strconv.Quote(v)
}
fmt.Fprintf(&sb, " Name=%q Value=%s", m.Name, m.Value)
case EventLabel:
l := e.Label()
fmt.Fprintf(&sb, " Label=%q Resource=%s", l.Label, l.Resource)
case EventRangeBegin, EventRangeActive, EventRangeEnd:
r := e.Range()
fmt.Fprintf(&sb, " Name=%q Scope=%s", r.Name, r.Scope)
if kind == EventRangeEnd {
fmt.Fprintf(&sb, " Attributes=[")
for i, attr := range e.RangeAttributes() {
if i != 0 {
fmt.Fprintf(&sb, " ")
}
fmt.Fprintf(&sb, "%q=%s", attr.Name, attr.Value)
}
fmt.Fprintf(&sb, "]")
}
case EventTaskBegin, EventTaskEnd:
t := e.Task()
fmt.Fprintf(&sb, " ID=%d Parent=%d Type=%q", t.ID, t.Parent, t.Type)
case EventRegionBegin, EventRegionEnd:
r := e.Region()
fmt.Fprintf(&sb, " Task=%d Type=%q", r.Task, r.Type)
case EventLog:
l := e.Log()
fmt.Fprintf(&sb, " Task=%d Category=%q Message=%q", l.Task, l.Category, l.Message)
case EventStateTransition:
s := e.StateTransition()
fmt.Fprintf(&sb, " Resource=%s Reason=%q", s.Resource, s.Reason)
switch s.Resource.Kind {
case ResourceGoroutine:
id := s.Resource.Goroutine()
old, new := s.Goroutine()
fmt.Fprintf(&sb, " GoID=%d %s->%s", id, old, new)
case ResourceProc:
id := s.Resource.Proc()
old, new := s.Proc()
fmt.Fprintf(&sb, " ProcID=%d %s->%s", id, old, new)
}
if s.Stack != NoStack {
fmt.Fprintln(&sb)
fmt.Fprintln(&sb, "TransitionStack=")
for f := range s.Stack.Frames() {
fmt.Fprintf(&sb, "\t%s @ 0x%x\n", f.Func, f.PC)
fmt.Fprintf(&sb, "\t\t%s:%d\n", f.File, f.Line)
}
}
case EventExperimental:
r := e.Experimental()
fmt.Fprintf(&sb, " Name=%s Args=[", r.Name)
for i, arg := range r.Args {
if i != 0 {
fmt.Fprintf(&sb, ", ")
}
fmt.Fprintf(&sb, "%s=%s", arg, r.ArgValue(i).String())
}
fmt.Fprintf(&sb, "]")
case EventSync:
s := e.Sync()
fmt.Fprintf(&sb, " N=%d", s.N)
if s.ClockSnapshot != nil {
fmt.Fprintf(&sb, " Trace=%d Mono=%d Wall=%s",
s.ClockSnapshot.Trace,
s.ClockSnapshot.Mono,
s.ClockSnapshot.Wall.Format(time.RFC3339),
)
}
}
if stk := e.Stack(); stk != NoStack {
fmt.Fprintln(&sb)
fmt.Fprintln(&sb, "Stack=")
for f := range stk.Frames() {
fmt.Fprintf(&sb, "\t%s @ 0x%x\n", f.Func, f.PC)
fmt.Fprintf(&sb, "\t\t%s:%d\n", f.File, f.Line)
}
}
return sb.String()
}
// validateTableIDs checks to make sure lookups in e.table
// will work.
func (e Event) validateTableIDs() error {
if e.base.typ == evSync {
return nil
}
spec := tracev2.Specs()[e.base.typ]
// Check stacks.
for _, i := range spec.StackIDs {
id := stackID(e.base.args[i-1])
_, ok := e.table.stacks.get(id)
if !ok {
return fmt.Errorf("found invalid stack ID %d for event %s", id, spec.Name)
}
}
// N.B. Strings referenced by stack frames are validated
// early on, when reading the stacks in to begin with.
// Check strings.
for _, i := range spec.StringIDs {
id := stringID(e.base.args[i-1])
_, ok := e.table.strings.get(id)
if !ok {
return fmt.Errorf("found invalid string ID %d for event %s", id, spec.Name)
}
}
return nil
}
func syncEvent(table *evTable, ts Time, n int) Event {
ev := Event{
table: table,
ctx: schedCtx{
G: NoGoroutine,
P: NoProc,
M: NoThread,
},
base: baseEvent{
typ: evSync,
time: ts,
},
}
ev.base.args[0] = uint64(n)
return ev
}
|