1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
|
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by "gen.bash" from internal/trace; DO NOT EDIT.
//go:build go1.23
package trace
import (
"bufio"
"bytes"
"cmp"
"encoding/binary"
"errors"
"fmt"
"io"
"slices"
"strings"
"time"
"golang.org/x/exp/trace/internal/tracev2"
"golang.org/x/exp/trace/internal/version"
)
// generation contains all the trace data for a single
// trace generation. It is purely data: it does not
// track any parse state nor does it contain a cursor
// into the generation.
type generation struct {
gen uint64
batches map[ThreadID][]batch
batchMs []ThreadID
cpuSamples []cpuSample
minTs timestamp
*evTable
}
// readGeneration buffers and decodes the structural elements of a trace generation
// out of r.
func readGeneration(r *bufio.Reader, ver version.Version) (*generation, error) {
if ver < version.Go126 {
return nil, errors.New("internal error: readGeneration called for <1.26 trace")
}
g := &generation{
evTable: &evTable{
pcs: make(map[uint64]frame),
},
batches: make(map[ThreadID][]batch),
}
// Read batches one at a time until we either hit the next generation.
for {
b, gen, err := readBatch(r)
if err == io.EOF {
if len(g.batches) != 0 {
return nil, errors.New("incomplete generation found; trace likely truncated")
}
return nil, nil // All done.
}
if err != nil {
return nil, err
}
if g.gen == 0 {
// Initialize gen.
g.gen = gen
}
if b.isEndOfGeneration() {
break
}
if gen == 0 {
// 0 is a sentinel used by the runtime, so we'll never see it.
return nil, fmt.Errorf("invalid generation number %d", gen)
}
if gen != g.gen {
return nil, fmt.Errorf("broken trace: missing end-of-generation event, or generations are interleaved")
}
if g.minTs == 0 || b.time < g.minTs {
g.minTs = b.time
}
if err := processBatch(g, b, ver); err != nil {
return nil, err
}
}
// Check some invariants.
if g.freq == 0 {
return nil, fmt.Errorf("no frequency event found")
}
if !g.hasClockSnapshot {
return nil, fmt.Errorf("no clock snapshot event found")
}
// N.B. Trust that the batch order is correct. We can't validate the batch order
// by timestamp because the timestamps could just be plain wrong. The source of
// truth is the order things appear in the trace and the partial order sequence
// numbers on certain events. If it turns out the batch order is actually incorrect
// we'll very likely fail to advance a partial order from the frontier.
// Compactify stacks and strings for better lookup performance later.
g.stacks.compactify()
g.strings.compactify()
// Validate stacks.
if err := validateStackStrings(&g.stacks, &g.strings, g.pcs); err != nil {
return nil, err
}
// Now that we have the frequency, fix up CPU samples.
fixUpCPUSamples(g.cpuSamples, g.freq)
return g, nil
}
// spilledBatch represents a batch that was read out for the next generation,
// while reading the previous one. It's passed on when parsing the next
// generation.
//
// Used only for trace versions < Go126.
type spilledBatch struct {
gen uint64
*batch
}
// readGenerationWithSpill buffers and decodes the structural elements of a trace generation
// out of r. spill is the first batch of the new generation (already buffered and
// parsed from reading the last generation). Returns the generation and the first
// batch read of the next generation, if any.
//
// If gen is non-nil, it is valid and must be processed before handling the returned
// error.
func readGenerationWithSpill(r *bufio.Reader, spill *spilledBatch, ver version.Version) (*generation, *spilledBatch, error) {
if ver >= version.Go126 {
return nil, nil, errors.New("internal error: readGenerationWithSpill called for Go 1.26+ trace")
}
g := &generation{
evTable: &evTable{
pcs: make(map[uint64]frame),
},
batches: make(map[ThreadID][]batch),
}
// Process the spilled batch.
if spill != nil {
// Process the spilled batch, which contains real data.
g.gen = spill.gen
g.minTs = spill.batch.time
if err := processBatch(g, *spill.batch, ver); err != nil {
return nil, nil, err
}
spill = nil
}
// Read batches one at a time until we either hit the next generation.
var spillErr error
for {
b, gen, err := readBatch(r)
if err == io.EOF {
break
}
if err != nil {
if g.gen != 0 {
// This may be an error reading the first batch of the next generation.
// This is fine. Let's forge ahead assuming that what we've got so
// far is fine.
spillErr = err
break
}
return nil, nil, err
}
if gen == 0 {
// 0 is a sentinel used by the runtime, so we'll never see it.
return nil, nil, fmt.Errorf("invalid generation number %d", gen)
}
if g.gen == 0 {
// Initialize gen.
g.gen = gen
}
if gen == g.gen+1 {
// TODO: Increment the generation with wraparound the same way the runtime does.
spill = &spilledBatch{gen: gen, batch: &b}
break
}
if gen != g.gen {
// N.B. Fail as fast as possible if we see this. At first it
// may seem prudent to be fault-tolerant and assume we have a
// complete generation, parsing and returning that first. However,
// if the batches are mixed across generations then it's likely
// we won't be able to parse this generation correctly at all.
// Rather than return a cryptic error in that case, indicate the
// problem as soon as we see it.
return nil, nil, fmt.Errorf("generations out of order")
}
if g.minTs == 0 || b.time < g.minTs {
g.minTs = b.time
}
if err := processBatch(g, b, ver); err != nil {
return nil, nil, err
}
}
// Check some invariants.
if g.freq == 0 {
return nil, nil, fmt.Errorf("no frequency event found")
}
if ver >= version.Go125 && !g.hasClockSnapshot {
return nil, nil, fmt.Errorf("no clock snapshot event found")
}
// N.B. Trust that the batch order is correct. We can't validate the batch order
// by timestamp because the timestamps could just be plain wrong. The source of
// truth is the order things appear in the trace and the partial order sequence
// numbers on certain events. If it turns out the batch order is actually incorrect
// we'll very likely fail to advance a partial order from the frontier.
// Compactify stacks and strings for better lookup performance later.
g.stacks.compactify()
g.strings.compactify()
// Validate stacks.
if err := validateStackStrings(&g.stacks, &g.strings, g.pcs); err != nil {
return nil, nil, err
}
// Now that we have the frequency, fix up CPU samples.
fixUpCPUSamples(g.cpuSamples, g.freq)
return g, spill, spillErr
}
// processBatch adds the batch to the generation.
func processBatch(g *generation, b batch, ver version.Version) error {
switch {
case b.isStringsBatch():
if err := addStrings(&g.strings, b); err != nil {
return err
}
case b.isStacksBatch():
if err := addStacks(&g.stacks, g.pcs, b); err != nil {
return err
}
case b.isCPUSamplesBatch():
samples, err := addCPUSamples(g.cpuSamples, b)
if err != nil {
return err
}
g.cpuSamples = samples
case b.isSyncBatch(ver):
if err := setSyncBatch(&g.sync, b, ver); err != nil {
return err
}
case b.exp != tracev2.NoExperiment:
if g.expBatches == nil {
g.expBatches = make(map[tracev2.Experiment][]ExperimentalBatch)
}
if err := addExperimentalBatch(g.expBatches, b); err != nil {
return err
}
case b.isEndOfGeneration():
return errors.New("internal error: unexpectedly processing EndOfGeneration; broken trace?")
default:
if _, ok := g.batches[b.m]; !ok {
g.batchMs = append(g.batchMs, b.m)
}
g.batches[b.m] = append(g.batches[b.m], b)
}
return nil
}
// validateStackStrings makes sure all the string references in
// the stack table are present in the string table.
func validateStackStrings(
stacks *dataTable[stackID, stack],
strings *dataTable[stringID, string],
frames map[uint64]frame,
) error {
var err error
stacks.forEach(func(id stackID, stk stack) bool {
for _, pc := range stk.pcs {
frame, ok := frames[pc]
if !ok {
err = fmt.Errorf("found unknown pc %x for stack %d", pc, id)
return false
}
_, ok = strings.get(frame.funcID)
if !ok {
err = fmt.Errorf("found invalid func string ID %d for stack %d", frame.funcID, id)
return false
}
_, ok = strings.get(frame.fileID)
if !ok {
err = fmt.Errorf("found invalid file string ID %d for stack %d", frame.fileID, id)
return false
}
}
return true
})
return err
}
// addStrings takes a batch whose first byte is an EvStrings event
// (indicating that the batch contains only strings) and adds each
// string contained therein to the provided strings map.
func addStrings(stringTable *dataTable[stringID, string], b batch) error {
if !b.isStringsBatch() {
return fmt.Errorf("internal error: addStrings called on non-string batch")
}
r := bytes.NewReader(b.data)
hdr, err := r.ReadByte() // Consume the EvStrings byte.
if err != nil || tracev2.EventType(hdr) != tracev2.EvStrings {
return fmt.Errorf("missing strings batch header")
}
var sb strings.Builder
for r.Len() != 0 {
// Read the header.
ev, err := r.ReadByte()
if err != nil {
return err
}
if tracev2.EventType(ev) != tracev2.EvString {
return fmt.Errorf("expected string event, got %d", ev)
}
// Read the string's ID.
id, err := binary.ReadUvarint(r)
if err != nil {
return err
}
// Read the string's length.
len, err := binary.ReadUvarint(r)
if err != nil {
return err
}
if len > tracev2.MaxEventTrailerDataSize {
return fmt.Errorf("invalid string size %d, maximum is %d", len, tracev2.MaxEventTrailerDataSize)
}
// Copy out the string.
n, err := io.CopyN(&sb, r, int64(len))
if n != int64(len) {
return fmt.Errorf("failed to read full string: read %d but wanted %d", n, len)
}
if err != nil {
return fmt.Errorf("copying string data: %w", err)
}
// Add the string to the map.
s := sb.String()
sb.Reset()
if err := stringTable.insert(stringID(id), s); err != nil {
return err
}
}
return nil
}
// addStacks takes a batch whose first byte is an EvStacks event
// (indicating that the batch contains only stacks) and adds each
// string contained therein to the provided stacks map.
func addStacks(stackTable *dataTable[stackID, stack], pcs map[uint64]frame, b batch) error {
if !b.isStacksBatch() {
return fmt.Errorf("internal error: addStacks called on non-stacks batch")
}
r := bytes.NewReader(b.data)
hdr, err := r.ReadByte() // Consume the EvStacks byte.
if err != nil || tracev2.EventType(hdr) != tracev2.EvStacks {
return fmt.Errorf("missing stacks batch header")
}
for r.Len() != 0 {
// Read the header.
ev, err := r.ReadByte()
if err != nil {
return err
}
if tracev2.EventType(ev) != tracev2.EvStack {
return fmt.Errorf("expected stack event, got %d", ev)
}
// Read the stack's ID.
id, err := binary.ReadUvarint(r)
if err != nil {
return err
}
// Read how many frames are in each stack.
nFrames, err := binary.ReadUvarint(r)
if err != nil {
return err
}
if nFrames > tracev2.MaxFramesPerStack {
return fmt.Errorf("invalid stack size %d, maximum is %d", nFrames, tracev2.MaxFramesPerStack)
}
// Each frame consists of 4 fields: pc, funcID (string), fileID (string), line.
frames := make([]uint64, 0, nFrames)
for i := uint64(0); i < nFrames; i++ {
// Read the frame data.
pc, err := binary.ReadUvarint(r)
if err != nil {
return fmt.Errorf("reading frame %d's PC for stack %d: %w", i+1, id, err)
}
funcID, err := binary.ReadUvarint(r)
if err != nil {
return fmt.Errorf("reading frame %d's funcID for stack %d: %w", i+1, id, err)
}
fileID, err := binary.ReadUvarint(r)
if err != nil {
return fmt.Errorf("reading frame %d's fileID for stack %d: %w", i+1, id, err)
}
line, err := binary.ReadUvarint(r)
if err != nil {
return fmt.Errorf("reading frame %d's line for stack %d: %w", i+1, id, err)
}
frames = append(frames, pc)
if _, ok := pcs[pc]; !ok {
pcs[pc] = frame{
pc: pc,
funcID: stringID(funcID),
fileID: stringID(fileID),
line: line,
}
}
}
// Add the stack to the map.
if err := stackTable.insert(stackID(id), stack{pcs: frames}); err != nil {
return err
}
}
return nil
}
// addCPUSamples takes a batch whose first byte is an EvCPUSamples event
// (indicating that the batch contains only CPU samples) and adds each
// sample contained therein to the provided samples list.
func addCPUSamples(samples []cpuSample, b batch) ([]cpuSample, error) {
if !b.isCPUSamplesBatch() {
return nil, fmt.Errorf("internal error: addCPUSamples called on non-CPU-sample batch")
}
r := bytes.NewReader(b.data)
hdr, err := r.ReadByte() // Consume the EvCPUSamples byte.
if err != nil || tracev2.EventType(hdr) != tracev2.EvCPUSamples {
return nil, fmt.Errorf("missing CPU samples batch header")
}
for r.Len() != 0 {
// Read the header.
ev, err := r.ReadByte()
if err != nil {
return nil, err
}
if tracev2.EventType(ev) != tracev2.EvCPUSample {
return nil, fmt.Errorf("expected CPU sample event, got %d", ev)
}
// Read the sample's timestamp.
ts, err := binary.ReadUvarint(r)
if err != nil {
return nil, err
}
// Read the sample's M.
m, err := binary.ReadUvarint(r)
if err != nil {
return nil, err
}
mid := ThreadID(m)
// Read the sample's P.
p, err := binary.ReadUvarint(r)
if err != nil {
return nil, err
}
pid := ProcID(p)
// Read the sample's G.
g, err := binary.ReadUvarint(r)
if err != nil {
return nil, err
}
goid := GoID(g)
if g == 0 {
goid = NoGoroutine
}
// Read the sample's stack.
s, err := binary.ReadUvarint(r)
if err != nil {
return nil, err
}
// Add the sample to the slice.
samples = append(samples, cpuSample{
schedCtx: schedCtx{
M: mid,
P: pid,
G: goid,
},
time: Time(ts), // N.B. this is really a "timestamp," not a Time.
stack: stackID(s),
})
}
return samples, nil
}
// sync holds the per-generation sync data.
type sync struct {
freq frequency
hasClockSnapshot bool
snapTime timestamp
snapMono uint64
snapWall time.Time
}
func setSyncBatch(s *sync, b batch, ver version.Version) error {
if !b.isSyncBatch(ver) {
return fmt.Errorf("internal error: setSyncBatch called on non-sync batch")
}
r := bytes.NewReader(b.data)
if ver >= version.Go125 {
hdr, err := r.ReadByte() // Consume the EvSync byte.
if err != nil || tracev2.EventType(hdr) != tracev2.EvSync {
return fmt.Errorf("missing sync batch header")
}
}
lastTs := b.time
for r.Len() != 0 {
// Read the header
ev, err := r.ReadByte()
if err != nil {
return err
}
et := tracev2.EventType(ev)
switch {
case et == tracev2.EvFrequency:
if s.freq != 0 {
return fmt.Errorf("found multiple frequency events")
}
// Read the frequency. It'll come out as timestamp units per second.
f, err := binary.ReadUvarint(r)
if err != nil {
return err
}
// Convert to nanoseconds per timestamp unit.
s.freq = frequency(1.0 / (float64(f) / 1e9))
case et == tracev2.EvClockSnapshot && ver >= version.Go125:
if s.hasClockSnapshot {
return fmt.Errorf("found multiple clock snapshot events")
}
s.hasClockSnapshot = true
// Read the EvClockSnapshot arguments.
tdiff, err := binary.ReadUvarint(r)
if err != nil {
return err
}
lastTs += timestamp(tdiff)
s.snapTime = lastTs
mono, err := binary.ReadUvarint(r)
if err != nil {
return err
}
s.snapMono = mono
sec, err := binary.ReadUvarint(r)
if err != nil {
return err
}
nsec, err := binary.ReadUvarint(r)
if err != nil {
return err
}
// TODO(felixge): In theory we could inject s.snapMono into the time
// value below to make it comparable. But there is no API for this
// in the time package right now.
s.snapWall = time.Unix(int64(sec), int64(nsec))
default:
return fmt.Errorf("expected frequency or clock snapshot event, got %d", ev)
}
}
return nil
}
// addExperimentalBatch takes an experimental batch and adds it to the list of experimental
// batches for the experiment its a part of.
func addExperimentalBatch(expBatches map[tracev2.Experiment][]ExperimentalBatch, b batch) error {
if b.exp == tracev2.NoExperiment {
return fmt.Errorf("internal error: addExperimentalBatch called on non-experimental batch")
}
expBatches[b.exp] = append(expBatches[b.exp], ExperimentalBatch{
Thread: b.m,
Data: b.data,
})
return nil
}
func fixUpCPUSamples(samples []cpuSample, freq frequency) {
// Fix up the CPU sample timestamps.
for i := range samples {
s := &samples[i]
s.time = freq.mul(timestamp(s.time))
}
// Sort the CPU samples.
slices.SortFunc(samples, func(a, b cpuSample) int {
return cmp.Compare(a.time, b.time)
})
}
|