1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
|
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by "gen.bash" from internal/trace; DO NOT EDIT.
//go:build go1.23
// Package tracev1 implements a parser for Go execution traces from versions
// 1.11–1.21.
//
// The package started as a copy of Go 1.19's golang.org/x/exp/trace, but has been
// optimized to be faster while using less memory and fewer allocations. It has
// been further modified for the specific purpose of converting traces to the
// new 1.22+ format.
package tracev1
import (
"bytes"
"cmp"
"encoding/binary"
"errors"
"fmt"
"golang.org/x/exp/trace/internal/version"
"io"
"math"
"slices"
"sort"
)
// Timestamp represents a count of nanoseconds since the beginning of the trace.
// They can only be meaningfully compared with other timestamps from the same
// trace.
type Timestamp int64
// Event describes one event in the trace.
type Event struct {
// The Event type is carefully laid out to optimize its size and to avoid
// pointers, the latter so that the garbage collector won't have to scan any
// memory of our millions of events.
Ts Timestamp // timestamp in nanoseconds
G uint64 // G on which the event happened
Args [4]uint64 // event-type-specific arguments
StkID uint32 // unique stack ID
P int32 // P on which the event happened (can be a real P or one of TimerP, NetpollP, SyscallP)
Type EventType // one of Ev*
}
// Frame is a frame in stack traces.
type Frame struct {
PC uint64
// string ID of the function name
Fn uint64
// string ID of the file name
File uint64
Line int
}
const (
// Special P identifiers:
FakeP = 1000000 + iota
TimerP // contains timer unblocks
NetpollP // contains network unblocks
SyscallP // contains returns from syscalls
GCP // contains GC state
ProfileP // contains recording of CPU profile samples
)
// Trace is the result of Parse.
type Trace struct {
Version version.Version
// Events is the sorted list of Events in the trace.
Events Events
// Stacks is the stack traces (stored as slices of PCs), keyed by stack IDs
// from the trace.
Stacks map[uint32][]uint64
PCs map[uint64]Frame
Strings map[uint64]string
InlineStrings []string
}
// batchOffset records the byte offset of, and number of events in, a batch. A
// batch is a sequence of events emitted by a P. Events within a single batch
// are sorted by time.
type batchOffset struct {
offset int
numEvents int
}
type parser struct {
ver version.Version
data []byte
off int
strings map[uint64]string
inlineStrings []string
inlineStringsMapping map[string]int
// map from Ps to their batch offsets
batchOffsets map[int32][]batchOffset
stacks map[uint32][]uint64
stacksData []uint64
ticksPerSec int64
pcs map[uint64]Frame
cpuSamples []Event
timerGoids map[uint64]bool
// state for readRawEvent
args []uint64
// state for parseEvent
lastTs Timestamp
lastG uint64
// map from Ps to the last Gs that ran on them
lastGs map[int32]uint64
lastP int32
}
func (p *parser) discard(n uint64) bool {
if n > math.MaxInt {
return false
}
if noff := p.off + int(n); noff < p.off || noff > len(p.data) {
return false
} else {
p.off = noff
}
return true
}
func newParser(r io.Reader, ver version.Version) (*parser, error) {
var buf []byte
if seeker, ok := r.(io.Seeker); ok {
// Determine the size of the reader so that we can allocate a buffer
// without having to grow it later.
cur, err := seeker.Seek(0, io.SeekCurrent)
if err != nil {
return nil, err
}
end, err := seeker.Seek(0, io.SeekEnd)
if err != nil {
return nil, err
}
_, err = seeker.Seek(cur, io.SeekStart)
if err != nil {
return nil, err
}
buf = make([]byte, end-cur)
_, err = io.ReadFull(r, buf)
if err != nil {
return nil, err
}
} else {
var err error
buf, err = io.ReadAll(r)
if err != nil {
return nil, err
}
}
return &parser{data: buf, ver: ver, timerGoids: make(map[uint64]bool)}, nil
}
// Parse parses Go execution traces from versions 1.11–1.21. The provided reader
// will be read to completion and the entire trace will be materialized in
// memory. That is, this function does not allow incremental parsing.
//
// The reader has to be positioned just after the trace header and vers needs to
// be the version of the trace. This can be achieved by using
// version.ReadHeader.
func Parse(r io.Reader, vers version.Version) (Trace, error) {
// We accept the version as an argument because golang.org/x/exp/trace will have
// already read the version to determine which parser to use.
p, err := newParser(r, vers)
if err != nil {
return Trace{}, err
}
return p.parse()
}
// parse parses, post-processes and verifies the trace.
func (p *parser) parse() (Trace, error) {
defer func() {
p.data = nil
}()
// We parse a trace by running the following steps in order:
//
// 1. In the initial pass we collect information about batches (their
// locations and sizes.) We also parse CPU profiling samples in this
// step, simply to reduce the number of full passes that we need.
//
// 2. In the second pass we parse batches and merge them into a globally
// ordered event stream. This uses the batch information from the first
// pass to quickly find batches.
//
// 3. After all events have been parsed we convert their timestamps from CPU
// ticks to wall time. Furthermore we move timers and syscalls to
// dedicated, fake Ps.
//
// 4. Finally, we validate the trace.
p.strings = make(map[uint64]string)
p.batchOffsets = make(map[int32][]batchOffset)
p.lastGs = make(map[int32]uint64)
p.stacks = make(map[uint32][]uint64)
p.pcs = make(map[uint64]Frame)
p.inlineStringsMapping = make(map[string]int)
if err := p.collectBatchesAndCPUSamples(); err != nil {
return Trace{}, err
}
events, err := p.parseEventBatches()
if err != nil {
return Trace{}, err
}
if p.ticksPerSec == 0 {
return Trace{}, errors.New("no EvFrequency event")
}
if events.Len() > 0 {
// Translate cpu ticks to real time.
minTs := events.Ptr(0).Ts
// Use floating point to avoid integer overflows.
freq := 1e9 / float64(p.ticksPerSec)
for i := 0; i < events.Len(); i++ {
ev := events.Ptr(i)
ev.Ts = Timestamp(float64(ev.Ts-minTs) * freq)
// Move timers and syscalls to separate fake Ps.
if p.timerGoids[ev.G] && ev.Type == EvGoUnblock {
ev.P = TimerP
}
if ev.Type == EvGoSysExit {
ev.P = SyscallP
}
}
}
if err := p.postProcessTrace(events); err != nil {
return Trace{}, err
}
res := Trace{
Version: p.ver,
Events: events,
Stacks: p.stacks,
Strings: p.strings,
InlineStrings: p.inlineStrings,
PCs: p.pcs,
}
return res, nil
}
// rawEvent is a helper type used during parsing.
type rawEvent struct {
typ EventType
args []uint64
sargs []string
// if typ == EvBatch, these fields describe the batch.
batchPid int32
batchOffset int
}
type proc struct {
pid int32
// the remaining events in the current batch
events []Event
// buffer for reading batches into, aliased by proc.events
buf []Event
// there are no more batches left
done bool
}
const eventsBucketSize = 524288 // 32 MiB of events
type Events struct {
// Events is a slice of slices that grows one slice of size eventsBucketSize
// at a time. This avoids the O(n) cost of slice growth in append, and
// additionally allows consumers to drop references to parts of the data,
// freeing memory piecewise.
n int
buckets []*[eventsBucketSize]Event
off int
}
// grow grows the slice by one and returns a pointer to the new element, without
// overwriting it.
func (l *Events) grow() *Event {
a, b := l.index(l.n)
if a >= len(l.buckets) {
l.buckets = append(l.buckets, new([eventsBucketSize]Event))
}
ptr := &l.buckets[a][b]
l.n++
return ptr
}
// append appends v to the slice and returns a pointer to the new element.
func (l *Events) append(v Event) *Event {
ptr := l.grow()
*ptr = v
return ptr
}
func (l *Events) Ptr(i int) *Event {
a, b := l.index(i + l.off)
return &l.buckets[a][b]
}
func (l *Events) index(i int) (int, int) {
// Doing the division on uint instead of int compiles this function to a
// shift and an AND (for power of 2 bucket sizes), versus a whole bunch of
// instructions for int.
return int(uint(i) / eventsBucketSize), int(uint(i) % eventsBucketSize)
}
func (l *Events) Len() int {
return l.n - l.off
}
func (l *Events) Less(i, j int) bool {
return l.Ptr(i).Ts < l.Ptr(j).Ts
}
func (l *Events) Swap(i, j int) {
*l.Ptr(i), *l.Ptr(j) = *l.Ptr(j), *l.Ptr(i)
}
func (l *Events) Pop() (*Event, bool) {
if l.off == l.n {
return nil, false
}
a, b := l.index(l.off)
ptr := &l.buckets[a][b]
l.off++
if b == eventsBucketSize-1 || l.off == l.n {
// We've consumed the last event from the bucket, so drop the bucket and
// allow GC to collect it.
l.buckets[a] = nil
}
return ptr, true
}
func (l *Events) Peek() (*Event, bool) {
if l.off == l.n {
return nil, false
}
a, b := l.index(l.off)
return &l.buckets[a][b], true
}
func (l *Events) All() func(yield func(ev *Event) bool) {
return func(yield func(ev *Event) bool) {
for i := 0; i < l.Len(); i++ {
a, b := l.index(i + l.off)
ptr := &l.buckets[a][b]
if !yield(ptr) {
return
}
}
}
}
// parseEventBatches reads per-P event batches and merges them into a single, consistent
// stream. The high level idea is as follows. Events within an individual batch
// are in correct order, because they are emitted by a single P. So we need to
// produce a correct interleaving of the batches. To do this we take first
// unmerged event from each batch (frontier). Then choose subset that is "ready"
// to be merged, that is, events for which all dependencies are already merged.
// Then we choose event with the lowest timestamp from the subset, merge it and
// repeat. This approach ensures that we form a consistent stream even if
// timestamps are incorrect (condition observed on some machines).
func (p *parser) parseEventBatches() (Events, error) {
// The ordering of CPU profile sample events in the data stream is based on
// when each run of the signal handler was able to acquire the spinlock,
// with original timestamps corresponding to when ReadTrace pulled the data
// off of the profBuf queue. Re-sort them by the timestamp we captured
// inside the signal handler.
slices.SortFunc(p.cpuSamples, func(a, b Event) int {
return cmp.Compare(a.Ts, b.Ts)
})
allProcs := make([]proc, 0, len(p.batchOffsets))
for pid := range p.batchOffsets {
allProcs = append(allProcs, proc{pid: pid})
}
allProcs = append(allProcs, proc{pid: ProfileP, events: p.cpuSamples})
events := Events{}
// Merge events as long as at least one P has more events
gs := make(map[uint64]gState)
// Note: technically we don't need a priority queue here. We're only ever
// interested in the earliest eligible event, which means we just have to
// track the smallest element. However, in practice, the priority queue
// performs better, because for each event we only have to compute its state
// transition once, not on each iteration. If it was eligible before, it'll
// already be in the queue. Furthermore, on average, we only have one P to
// look at in each iteration, because all other Ps are already in the queue.
var frontier orderEventList
availableProcs := make([]*proc, len(allProcs))
for i := range allProcs {
availableProcs[i] = &allProcs[i]
}
for {
pidLoop:
for i := 0; i < len(availableProcs); i++ {
proc := availableProcs[i]
for len(proc.events) == 0 {
// Call loadBatch in a loop because sometimes batches are empty
evs, err := p.loadBatch(proc.pid, proc.buf[:0])
proc.buf = evs[:0]
if err == io.EOF {
// This P has no more events
proc.done = true
availableProcs[i], availableProcs[len(availableProcs)-1] = availableProcs[len(availableProcs)-1], availableProcs[i]
availableProcs = availableProcs[:len(availableProcs)-1]
// We swapped the element at i with another proc, so look at
// the index again
i--
continue pidLoop
} else if err != nil {
return Events{}, err
} else {
proc.events = evs
}
}
ev := &proc.events[0]
g, init, _ := stateTransition(ev)
// TODO(dh): This implementation matches the behavior of the
// upstream 'go tool trace', and works in practice, but has run into
// the following inconsistency during fuzzing: what happens if
// multiple Ps have events for the same G? While building the
// frontier we will check all of the events against the current
// state of the G. However, when we process the frontier, the state
// of the G changes, and a transition that was valid while building
// the frontier may no longer be valid when processing the frontier.
// Is this something that can happen for real, valid traces, or is
// this only possible with corrupt data?
if !transitionReady(g, gs[g], init) {
continue
}
proc.events = proc.events[1:]
availableProcs[i], availableProcs[len(availableProcs)-1] = availableProcs[len(availableProcs)-1], availableProcs[i]
availableProcs = availableProcs[:len(availableProcs)-1]
frontier.Push(orderEvent{*ev, proc})
// We swapped the element at i with another proc, so look at the
// index again
i--
}
if len(frontier) == 0 {
for i := range allProcs {
if !allProcs[i].done {
return Events{}, fmt.Errorf("no consistent ordering of events possible")
}
}
break
}
f := frontier.Pop()
// We're computing the state transition twice, once when computing the
// frontier, and now to apply the transition. This is fine because
// stateTransition is a pure function. Computing it again is cheaper
// than storing large items in the frontier.
g, init, next := stateTransition(&f.ev)
// Get rid of "Local" events, they are intended merely for ordering.
switch f.ev.Type {
case EvGoStartLocal:
f.ev.Type = EvGoStart
case EvGoUnblockLocal:
f.ev.Type = EvGoUnblock
case EvGoSysExitLocal:
f.ev.Type = EvGoSysExit
}
events.append(f.ev)
if err := transition(gs, g, init, next); err != nil {
return Events{}, err
}
availableProcs = append(availableProcs, f.proc)
}
// At this point we have a consistent stream of events. Make sure time
// stamps respect the ordering. The tests will skip (not fail) the test case
// if they see this error.
if !sort.IsSorted(&events) {
return Events{}, ErrTimeOrder
}
// The last part is giving correct timestamps to EvGoSysExit events. The
// problem with EvGoSysExit is that actual syscall exit timestamp
// (ev.Args[2]) is potentially acquired long before event emission. So far
// we've used timestamp of event emission (ev.Ts). We could not set ev.Ts =
// ev.Args[2] earlier, because it would produce seemingly broken timestamps
// (misplaced event). We also can't simply update the timestamp and resort
// events, because if timestamps are broken we will misplace the event and
// later report logically broken trace (instead of reporting broken
// timestamps).
lastSysBlock := make(map[uint64]Timestamp)
for i := 0; i < events.Len(); i++ {
ev := events.Ptr(i)
switch ev.Type {
case EvGoSysBlock, EvGoInSyscall:
lastSysBlock[ev.G] = ev.Ts
case EvGoSysExit:
ts := Timestamp(ev.Args[2])
if ts == 0 {
continue
}
block := lastSysBlock[ev.G]
if block == 0 {
return Events{}, fmt.Errorf("stray syscall exit")
}
if ts < block {
return Events{}, ErrTimeOrder
}
ev.Ts = ts
}
}
sort.Stable(&events)
return events, nil
}
// collectBatchesAndCPUSamples records the offsets of batches and parses CPU samples.
func (p *parser) collectBatchesAndCPUSamples() error {
// Read events.
var raw rawEvent
var curP int32
for n := uint64(0); ; n++ {
err := p.readRawEvent(skipArgs|skipStrings, &raw)
if err == io.EOF {
break
}
if err != nil {
return err
}
if raw.typ == EvNone {
continue
}
if raw.typ == EvBatch {
bo := batchOffset{offset: raw.batchOffset}
p.batchOffsets[raw.batchPid] = append(p.batchOffsets[raw.batchPid], bo)
curP = raw.batchPid
}
batches := p.batchOffsets[curP]
if len(batches) == 0 {
return fmt.Errorf("read event %d with current P of %d, but P has no batches yet",
raw.typ, curP)
}
batches[len(batches)-1].numEvents++
if raw.typ == EvCPUSample {
e := Event{Type: raw.typ}
argOffset := 1
narg := raw.argNum()
if len(raw.args) != narg {
return fmt.Errorf("CPU sample has wrong number of arguments: want %d, got %d", narg, len(raw.args))
}
for i := argOffset; i < narg; i++ {
if i == narg-1 {
e.StkID = uint32(raw.args[i])
} else {
e.Args[i-argOffset] = raw.args[i]
}
}
e.Ts = Timestamp(e.Args[0])
e.P = int32(e.Args[1])
e.G = e.Args[2]
e.Args[0] = 0
// Most events are written out by the active P at the exact moment
// they describe. CPU profile samples are different because they're
// written to the tracing log after some delay, by a separate worker
// goroutine, into a separate buffer.
//
// We keep these in their own batch until all of the batches are
// merged in timestamp order. We also (right before the merge)
// re-sort these events by the timestamp captured in the profiling
// signal handler.
//
// Note that we're not concerned about the memory usage of storing
// all CPU samples during the indexing phase. There are orders of
// magnitude fewer CPU samples than runtime events.
p.cpuSamples = append(p.cpuSamples, e)
}
}
return nil
}
const (
skipArgs = 1 << iota
skipStrings
)
func (p *parser) readByte() (byte, bool) {
if p.off < len(p.data) && p.off >= 0 {
b := p.data[p.off]
p.off++
return b, true
} else {
return 0, false
}
}
func (p *parser) readFull(n int) ([]byte, error) {
if p.off >= len(p.data) || p.off < 0 || p.off+n > len(p.data) {
// p.off < 0 is impossible but makes BCE happy.
//
// We do fail outright if there's not enough data, we don't care about
// partial results.
return nil, io.ErrUnexpectedEOF
}
buf := p.data[p.off : p.off+n]
p.off += n
return buf, nil
}
// readRawEvent reads a raw event into ev. The slices in ev are only valid until
// the next call to readRawEvent, even when storing to a different location.
func (p *parser) readRawEvent(flags uint, ev *rawEvent) error {
// The number of arguments is encoded using two bits and can thus only
// represent the values 0–3. The value 3 (on the wire) indicates that
// arguments are prefixed by their byte length, to encode >=3 arguments.
const inlineArgs = 3
// Read event type and number of arguments (1 byte).
b, ok := p.readByte()
if !ok {
return io.EOF
}
typ := EventType(b << 2 >> 2)
// Most events have a timestamp before the actual arguments, so we add 1 and
// parse it like it's the first argument. EvString has a special format and
// the number of arguments doesn't matter. EvBatch writes '1' as the number
// of arguments, but actually has two: a pid and a timestamp, but here the
// timestamp is the second argument, not the first; adding 1 happens to come
// up with the correct number, but it doesn't matter, because EvBatch has
// custom logic for parsing.
//
// Note that because we're adding 1, inlineArgs == 3 describes the largest
// number of logical arguments that isn't length-prefixed, even though the
// value 3 on the wire indicates length-prefixing. For us, that becomes narg
// == 4.
narg := b>>6 + 1
if typ == EvNone || typ >= EvCount || EventDescriptions[typ].minVersion > p.ver {
return fmt.Errorf("unknown event type %d", typ)
}
switch typ {
case EvString:
if flags&skipStrings != 0 {
// String dictionary entry [ID, length, string].
if _, err := p.readVal(); err != nil {
return errMalformedVarint
}
ln, err := p.readVal()
if err != nil {
return err
}
if !p.discard(ln) {
return fmt.Errorf("failed to read trace: %w", io.EOF)
}
} else {
// String dictionary entry [ID, length, string].
id, err := p.readVal()
if err != nil {
return err
}
if id == 0 {
return errors.New("string has invalid id 0")
}
if p.strings[id] != "" {
return fmt.Errorf("string has duplicate id %d", id)
}
var ln uint64
ln, err = p.readVal()
if err != nil {
return err
}
if ln == 0 {
return errors.New("string has invalid length 0")
}
if ln > 1e6 {
return fmt.Errorf("string has too large length %d", ln)
}
buf, err := p.readFull(int(ln))
if err != nil {
return fmt.Errorf("failed to read trace: %w", err)
}
p.strings[id] = string(buf)
}
ev.typ = EvNone
return nil
case EvBatch:
if want := byte(2); narg != want {
return fmt.Errorf("EvBatch has wrong number of arguments: got %d, want %d", narg, want)
}
// -1 because we've already read the first byte of the batch
off := p.off - 1
pid, err := p.readVal()
if err != nil {
return err
}
if pid != math.MaxUint64 && pid > math.MaxInt32 {
return fmt.Errorf("processor ID %d is larger than maximum of %d", pid, uint64(math.MaxUint))
}
var pid32 int32
if pid == math.MaxUint64 {
pid32 = -1
} else {
pid32 = int32(pid)
}
v, err := p.readVal()
if err != nil {
return err
}
*ev = rawEvent{
typ: EvBatch,
args: p.args[:0],
batchPid: pid32,
batchOffset: off,
}
ev.args = append(ev.args, pid, v)
return nil
default:
*ev = rawEvent{typ: typ, args: p.args[:0]}
if narg <= inlineArgs {
if flags&skipArgs == 0 {
for i := 0; i < int(narg); i++ {
v, err := p.readVal()
if err != nil {
return fmt.Errorf("failed to read event %d argument: %w", typ, err)
}
ev.args = append(ev.args, v)
}
} else {
for i := 0; i < int(narg); i++ {
if _, err := p.readVal(); err != nil {
return fmt.Errorf("failed to read event %d argument: %w", typ, errMalformedVarint)
}
}
}
} else {
// More than inlineArgs args, the first value is length of the event
// in bytes.
v, err := p.readVal()
if err != nil {
return fmt.Errorf("failed to read event %d argument: %w", typ, err)
}
if limit := uint64(2048); v > limit {
// At the time of Go 1.19, v seems to be at most 128. Set 2048
// as a generous upper limit and guard against malformed traces.
return fmt.Errorf("failed to read event %d argument: length-prefixed argument too big: %d bytes, limit is %d", typ, v, limit)
}
if flags&skipArgs == 0 || typ == EvCPUSample {
buf, err := p.readFull(int(v))
if err != nil {
return fmt.Errorf("failed to read trace: %w", err)
}
for len(buf) > 0 {
var v uint64
v, buf, err = readValFrom(buf)
if err != nil {
return err
}
ev.args = append(ev.args, v)
}
} else {
// Skip over arguments
if !p.discard(v) {
return fmt.Errorf("failed to read trace: %w", io.EOF)
}
}
if typ == EvUserLog {
// EvUserLog records are followed by a value string
if flags&skipArgs == 0 {
// Read string
s, err := p.readStr()
if err != nil {
return err
}
ev.sargs = append(ev.sargs, s)
} else {
// Skip string
v, err := p.readVal()
if err != nil {
return err
}
if !p.discard(v) {
return io.EOF
}
}
}
}
p.args = ev.args[:0]
return nil
}
}
// loadBatch loads the next batch for pid and appends its contents to events.
func (p *parser) loadBatch(pid int32, events []Event) ([]Event, error) {
offsets := p.batchOffsets[pid]
if len(offsets) == 0 {
return nil, io.EOF
}
n := offsets[0].numEvents
offset := offsets[0].offset
offsets = offsets[1:]
p.batchOffsets[pid] = offsets
p.off = offset
if cap(events) < n {
events = make([]Event, 0, n)
}
gotHeader := false
var raw rawEvent
var ev Event
for {
err := p.readRawEvent(0, &raw)
if err == io.EOF {
break
}
if err != nil {
return nil, err
}
if raw.typ == EvNone || raw.typ == EvCPUSample {
continue
}
if raw.typ == EvBatch {
if gotHeader {
break
} else {
gotHeader = true
}
}
err = p.parseEvent(&raw, &ev)
if err != nil {
return nil, err
}
if ev.Type != EvNone {
events = append(events, ev)
}
}
return events, nil
}
func (p *parser) readStr() (s string, err error) {
sz, err := p.readVal()
if err != nil {
return "", err
}
if sz == 0 {
return "", nil
}
if sz > 1e6 {
return "", fmt.Errorf("string is too large (len=%d)", sz)
}
buf, err := p.readFull(int(sz))
if err != nil {
return "", fmt.Errorf("failed to read trace: %w", err)
}
return string(buf), nil
}
// parseEvent transforms raw events into events.
// It does analyze and verify per-event-type arguments.
func (p *parser) parseEvent(raw *rawEvent, ev *Event) error {
desc := &EventDescriptions[raw.typ]
if desc.Name == "" {
return fmt.Errorf("missing description for event type %d", raw.typ)
}
narg := raw.argNum()
if len(raw.args) != narg {
return fmt.Errorf("%s has wrong number of arguments: want %d, got %d", desc.Name, narg, len(raw.args))
}
switch raw.typ {
case EvBatch:
p.lastGs[p.lastP] = p.lastG
if raw.args[0] != math.MaxUint64 && raw.args[0] > math.MaxInt32 {
return fmt.Errorf("processor ID %d is larger than maximum of %d", raw.args[0], uint64(math.MaxInt32))
}
if raw.args[0] == math.MaxUint64 {
p.lastP = -1
} else {
p.lastP = int32(raw.args[0])
}
p.lastG = p.lastGs[p.lastP]
p.lastTs = Timestamp(raw.args[1])
case EvFrequency:
p.ticksPerSec = int64(raw.args[0])
if p.ticksPerSec <= 0 {
// The most likely cause for this is tick skew on different CPUs.
// For example, solaris/amd64 seems to have wildly different
// ticks on different CPUs.
return ErrTimeOrder
}
case EvTimerGoroutine:
p.timerGoids[raw.args[0]] = true
case EvStack:
if len(raw.args) < 2 {
return fmt.Errorf("EvStack has wrong number of arguments: want at least 2, got %d", len(raw.args))
}
size := raw.args[1]
if size > 1000 {
return fmt.Errorf("EvStack has bad number of frames: %d", size)
}
want := 2 + 4*size
if uint64(len(raw.args)) != want {
return fmt.Errorf("EvStack has wrong number of arguments: want %d, got %d", want, len(raw.args))
}
id := uint32(raw.args[0])
if id != 0 && size > 0 {
stk := p.allocateStack(size)
for i := 0; i < int(size); i++ {
pc := raw.args[2+i*4+0]
fn := raw.args[2+i*4+1]
file := raw.args[2+i*4+2]
line := raw.args[2+i*4+3]
stk[i] = pc
if _, ok := p.pcs[pc]; !ok {
p.pcs[pc] = Frame{PC: pc, Fn: fn, File: file, Line: int(line)}
}
}
p.stacks[id] = stk
}
case EvCPUSample:
// These events get parsed during the indexing step and don't strictly
// belong to the batch.
default:
*ev = Event{Type: raw.typ, P: p.lastP, G: p.lastG}
var argOffset int
ev.Ts = p.lastTs + Timestamp(raw.args[0])
argOffset = 1
p.lastTs = ev.Ts
for i := argOffset; i < narg; i++ {
if i == narg-1 && desc.Stack {
ev.StkID = uint32(raw.args[i])
} else {
ev.Args[i-argOffset] = raw.args[i]
}
}
switch raw.typ {
case EvGoStart, EvGoStartLocal, EvGoStartLabel:
p.lastG = ev.Args[0]
ev.G = p.lastG
case EvGoEnd, EvGoStop, EvGoSched, EvGoPreempt,
EvGoSleep, EvGoBlock, EvGoBlockSend, EvGoBlockRecv,
EvGoBlockSelect, EvGoBlockSync, EvGoBlockCond, EvGoBlockNet,
EvGoSysBlock, EvGoBlockGC:
p.lastG = 0
case EvGoSysExit, EvGoWaiting, EvGoInSyscall:
ev.G = ev.Args[0]
case EvUserTaskCreate:
// e.Args 0: taskID, 1:parentID, 2:nameID
case EvUserRegion:
// e.Args 0: taskID, 1: mode, 2:nameID
case EvUserLog:
// e.Args 0: taskID, 1:keyID, 2: stackID, 3: messageID
// raw.sargs 0: message
if id, ok := p.inlineStringsMapping[raw.sargs[0]]; ok {
ev.Args[3] = uint64(id)
} else {
id := len(p.inlineStrings)
p.inlineStringsMapping[raw.sargs[0]] = id
p.inlineStrings = append(p.inlineStrings, raw.sargs[0])
ev.Args[3] = uint64(id)
}
}
return nil
}
ev.Type = EvNone
return nil
}
// ErrTimeOrder is returned by Parse when the trace contains
// time stamps that do not respect actual event ordering.
var ErrTimeOrder = errors.New("time stamps out of order")
// postProcessTrace does inter-event verification and information restoration.
// The resulting trace is guaranteed to be consistent
// (for example, a P does not run two Gs at the same time, or a G is indeed
// blocked before an unblock event).
func (p *parser) postProcessTrace(events Events) error {
const (
gDead = iota
gRunnable
gRunning
gWaiting
)
type gdesc struct {
state int
ev *Event
evStart *Event
evCreate *Event
evMarkAssist *Event
}
type pdesc struct {
running bool
g uint64
evSweep *Event
}
gs := make(map[uint64]gdesc)
ps := make(map[int32]pdesc)
tasks := make(map[uint64]*Event) // task id to task creation events
activeRegions := make(map[uint64][]*Event) // goroutine id to stack of regions
gs[0] = gdesc{state: gRunning}
var evGC, evSTW *Event
checkRunning := func(p pdesc, g gdesc, ev *Event, allowG0 bool) error {
name := EventDescriptions[ev.Type].Name
if g.state != gRunning {
return fmt.Errorf("g %d is not running while %s (time %d)", ev.G, name, ev.Ts)
}
if p.g != ev.G {
return fmt.Errorf("p %d is not running g %d while %s (time %d)", ev.P, ev.G, name, ev.Ts)
}
if !allowG0 && ev.G == 0 {
return fmt.Errorf("g 0 did %s (time %d)", name, ev.Ts)
}
return nil
}
for evIdx := 0; evIdx < events.Len(); evIdx++ {
ev := events.Ptr(evIdx)
switch ev.Type {
case EvProcStart:
p := ps[ev.P]
if p.running {
return fmt.Errorf("p %d is running before start (time %d)", ev.P, ev.Ts)
}
p.running = true
ps[ev.P] = p
case EvProcStop:
p := ps[ev.P]
if !p.running {
return fmt.Errorf("p %d is not running before stop (time %d)", ev.P, ev.Ts)
}
if p.g != 0 {
return fmt.Errorf("p %d is running a goroutine %d during stop (time %d)", ev.P, p.g, ev.Ts)
}
p.running = false
ps[ev.P] = p
case EvGCStart:
if evGC != nil {
return fmt.Errorf("previous GC is not ended before a new one (time %d)", ev.Ts)
}
evGC = ev
// Attribute this to the global GC state.
ev.P = GCP
case EvGCDone:
if evGC == nil {
return fmt.Errorf("bogus GC end (time %d)", ev.Ts)
}
evGC = nil
case EvSTWStart:
evp := &evSTW
if *evp != nil {
return fmt.Errorf("previous STW is not ended before a new one (time %d)", ev.Ts)
}
*evp = ev
case EvSTWDone:
evp := &evSTW
if *evp == nil {
return fmt.Errorf("bogus STW end (time %d)", ev.Ts)
}
*evp = nil
case EvGCSweepStart:
p := ps[ev.P]
if p.evSweep != nil {
return fmt.Errorf("previous sweeping is not ended before a new one (time %d)", ev.Ts)
}
p.evSweep = ev
ps[ev.P] = p
case EvGCMarkAssistStart:
g := gs[ev.G]
if g.evMarkAssist != nil {
return fmt.Errorf("previous mark assist is not ended before a new one (time %d)", ev.Ts)
}
g.evMarkAssist = ev
gs[ev.G] = g
case EvGCMarkAssistDone:
// Unlike most events, mark assists can be in progress when a
// goroutine starts tracing, so we can't report an error here.
g := gs[ev.G]
if g.evMarkAssist != nil {
g.evMarkAssist = nil
}
gs[ev.G] = g
case EvGCSweepDone:
p := ps[ev.P]
if p.evSweep == nil {
return fmt.Errorf("bogus sweeping end (time %d)", ev.Ts)
}
p.evSweep = nil
ps[ev.P] = p
case EvGoWaiting:
g := gs[ev.G]
if g.state != gRunnable {
return fmt.Errorf("g %d is not runnable before EvGoWaiting (time %d)", ev.G, ev.Ts)
}
g.state = gWaiting
g.ev = ev
gs[ev.G] = g
case EvGoInSyscall:
g := gs[ev.G]
if g.state != gRunnable {
return fmt.Errorf("g %d is not runnable before EvGoInSyscall (time %d)", ev.G, ev.Ts)
}
g.state = gWaiting
g.ev = ev
gs[ev.G] = g
case EvGoCreate:
g := gs[ev.G]
p := ps[ev.P]
if err := checkRunning(p, g, ev, true); err != nil {
return err
}
if _, ok := gs[ev.Args[0]]; ok {
return fmt.Errorf("g %d already exists (time %d)", ev.Args[0], ev.Ts)
}
gs[ev.Args[0]] = gdesc{state: gRunnable, ev: ev, evCreate: ev}
case EvGoStart, EvGoStartLabel:
g := gs[ev.G]
p := ps[ev.P]
if g.state != gRunnable {
return fmt.Errorf("g %d is not runnable before start (time %d)", ev.G, ev.Ts)
}
if p.g != 0 {
return fmt.Errorf("p %d is already running g %d while start g %d (time %d)", ev.P, p.g, ev.G, ev.Ts)
}
g.state = gRunning
g.evStart = ev
p.g = ev.G
if g.evCreate != nil {
ev.StkID = uint32(g.evCreate.Args[1])
g.evCreate = nil
}
if g.ev != nil {
g.ev = nil
}
gs[ev.G] = g
ps[ev.P] = p
case EvGoEnd, EvGoStop:
g := gs[ev.G]
p := ps[ev.P]
if err := checkRunning(p, g, ev, false); err != nil {
return err
}
g.evStart = nil
g.state = gDead
p.g = 0
if ev.Type == EvGoEnd { // flush all active regions
delete(activeRegions, ev.G)
}
gs[ev.G] = g
ps[ev.P] = p
case EvGoSched, EvGoPreempt:
g := gs[ev.G]
p := ps[ev.P]
if err := checkRunning(p, g, ev, false); err != nil {
return err
}
g.state = gRunnable
g.evStart = nil
p.g = 0
g.ev = ev
gs[ev.G] = g
ps[ev.P] = p
case EvGoUnblock:
g := gs[ev.G]
p := ps[ev.P]
if g.state != gRunning {
return fmt.Errorf("g %d is not running while unpark (time %d)", ev.G, ev.Ts)
}
if ev.P != TimerP && p.g != ev.G {
return fmt.Errorf("p %d is not running g %d while unpark (time %d)", ev.P, ev.G, ev.Ts)
}
g1 := gs[ev.Args[0]]
if g1.state != gWaiting {
return fmt.Errorf("g %d is not waiting before unpark (time %d)", ev.Args[0], ev.Ts)
}
if g1.ev != nil && g1.ev.Type == EvGoBlockNet {
ev.P = NetpollP
}
g1.state = gRunnable
g1.ev = ev
gs[ev.Args[0]] = g1
case EvGoSysCall:
g := gs[ev.G]
p := ps[ev.P]
if err := checkRunning(p, g, ev, false); err != nil {
return err
}
g.ev = ev
gs[ev.G] = g
case EvGoSysBlock:
g := gs[ev.G]
p := ps[ev.P]
if err := checkRunning(p, g, ev, false); err != nil {
return err
}
g.state = gWaiting
g.evStart = nil
p.g = 0
gs[ev.G] = g
ps[ev.P] = p
case EvGoSysExit:
g := gs[ev.G]
if g.state != gWaiting {
return fmt.Errorf("g %d is not waiting during syscall exit (time %d)", ev.G, ev.Ts)
}
g.state = gRunnable
g.ev = ev
gs[ev.G] = g
case EvGoSleep, EvGoBlock, EvGoBlockSend, EvGoBlockRecv,
EvGoBlockSelect, EvGoBlockSync, EvGoBlockCond, EvGoBlockNet, EvGoBlockGC:
g := gs[ev.G]
p := ps[ev.P]
if err := checkRunning(p, g, ev, false); err != nil {
return err
}
g.state = gWaiting
g.ev = ev
g.evStart = nil
p.g = 0
gs[ev.G] = g
ps[ev.P] = p
case EvUserTaskCreate:
taskid := ev.Args[0]
if prevEv, ok := tasks[taskid]; ok {
return fmt.Errorf("task id conflicts (id:%d), %q vs %q", taskid, ev, prevEv)
}
tasks[ev.Args[0]] = ev
case EvUserTaskEnd:
taskid := ev.Args[0]
delete(tasks, taskid)
case EvUserRegion:
mode := ev.Args[1]
regions := activeRegions[ev.G]
if mode == 0 { // region start
activeRegions[ev.G] = append(regions, ev) // push
} else if mode == 1 { // region end
n := len(regions)
if n > 0 { // matching region start event is in the trace.
s := regions[n-1]
if s.Args[0] != ev.Args[0] || s.Args[2] != ev.Args[2] { // task id, region name mismatch
return fmt.Errorf("misuse of region in goroutine %d: span end %q when the inner-most active span start event is %q", ev.G, ev, s)
}
if n > 1 {
activeRegions[ev.G] = regions[:n-1]
} else {
delete(activeRegions, ev.G)
}
}
} else {
return fmt.Errorf("invalid user region mode: %q", ev)
}
}
if ev.StkID != 0 && len(p.stacks[ev.StkID]) == 0 {
// Make sure events don't refer to stacks that don't exist or to
// stacks with zero frames. Neither of these should be possible, but
// better be safe than sorry.
ev.StkID = 0
}
}
// TODO(mknyszek): restore stacks for EvGoStart events.
return nil
}
var errMalformedVarint = errors.New("malformatted base-128 varint")
// readVal reads unsigned base-128 value from r.
func (p *parser) readVal() (uint64, error) {
v, n := binary.Uvarint(p.data[p.off:])
if n <= 0 {
return 0, errMalformedVarint
}
p.off += n
return v, nil
}
func readValFrom(buf []byte) (v uint64, rem []byte, err error) {
v, n := binary.Uvarint(buf)
if n <= 0 {
return 0, nil, errMalformedVarint
}
return v, buf[n:], nil
}
func (ev *Event) String() string {
desc := &EventDescriptions[ev.Type]
w := new(bytes.Buffer)
fmt.Fprintf(w, "%d %s p=%d g=%d stk=%d", ev.Ts, desc.Name, ev.P, ev.G, ev.StkID)
for i, a := range desc.Args {
fmt.Fprintf(w, " %s=%d", a, ev.Args[i])
}
return w.String()
}
// argNum returns total number of args for the event accounting for timestamps,
// sequence numbers and differences between trace format versions.
func (raw *rawEvent) argNum() int {
desc := &EventDescriptions[raw.typ]
if raw.typ == EvStack {
return len(raw.args)
}
narg := len(desc.Args)
if desc.Stack {
narg++
}
switch raw.typ {
case EvBatch, EvFrequency, EvTimerGoroutine:
return narg
}
narg++ // timestamp
return narg
}
type EventType uint8
// Event types in the trace.
// Verbatim copy from src/runtime/trace.go with the "trace" prefix removed.
const (
EvNone EventType = 0 // unused
EvBatch EventType = 1 // start of per-P batch of events [pid, timestamp]
EvFrequency EventType = 2 // contains tracer timer frequency [frequency (ticks per second)]
EvStack EventType = 3 // stack [stack id, number of PCs, array of {PC, func string ID, file string ID, line}]
EvGomaxprocs EventType = 4 // current value of GOMAXPROCS [timestamp, GOMAXPROCS, stack id]
EvProcStart EventType = 5 // start of P [timestamp, thread id]
EvProcStop EventType = 6 // stop of P [timestamp]
EvGCStart EventType = 7 // GC start [timestamp, seq, stack id]
EvGCDone EventType = 8 // GC done [timestamp]
EvSTWStart EventType = 9 // GC mark termination start [timestamp, kind]
EvSTWDone EventType = 10 // GC mark termination done [timestamp]
EvGCSweepStart EventType = 11 // GC sweep start [timestamp, stack id]
EvGCSweepDone EventType = 12 // GC sweep done [timestamp, swept, reclaimed]
EvGoCreate EventType = 13 // goroutine creation [timestamp, new goroutine id, new stack id, stack id]
EvGoStart EventType = 14 // goroutine starts running [timestamp, goroutine id, seq]
EvGoEnd EventType = 15 // goroutine ends [timestamp]
EvGoStop EventType = 16 // goroutine stops (like in select{}) [timestamp, stack]
EvGoSched EventType = 17 // goroutine calls Gosched [timestamp, stack]
EvGoPreempt EventType = 18 // goroutine is preempted [timestamp, stack]
EvGoSleep EventType = 19 // goroutine calls Sleep [timestamp, stack]
EvGoBlock EventType = 20 // goroutine blocks [timestamp, stack]
EvGoUnblock EventType = 21 // goroutine is unblocked [timestamp, goroutine id, seq, stack]
EvGoBlockSend EventType = 22 // goroutine blocks on chan send [timestamp, stack]
EvGoBlockRecv EventType = 23 // goroutine blocks on chan recv [timestamp, stack]
EvGoBlockSelect EventType = 24 // goroutine blocks on select [timestamp, stack]
EvGoBlockSync EventType = 25 // goroutine blocks on Mutex/RWMutex [timestamp, stack]
EvGoBlockCond EventType = 26 // goroutine blocks on Cond [timestamp, stack]
EvGoBlockNet EventType = 27 // goroutine blocks on network [timestamp, stack]
EvGoSysCall EventType = 28 // syscall enter [timestamp, stack]
EvGoSysExit EventType = 29 // syscall exit [timestamp, goroutine id, seq, real timestamp]
EvGoSysBlock EventType = 30 // syscall blocks [timestamp]
EvGoWaiting EventType = 31 // denotes that goroutine is blocked when tracing starts [timestamp, goroutine id]
EvGoInSyscall EventType = 32 // denotes that goroutine is in syscall when tracing starts [timestamp, goroutine id]
EvHeapAlloc EventType = 33 // gcController.heapLive change [timestamp, heap live bytes]
EvHeapGoal EventType = 34 // gcController.heapGoal change [timestamp, heap goal bytes]
EvTimerGoroutine EventType = 35 // denotes timer goroutine [timer goroutine id]
EvFutileWakeup EventType = 36 // denotes that the previous wakeup of this goroutine was futile [timestamp]
EvString EventType = 37 // string dictionary entry [ID, length, string]
EvGoStartLocal EventType = 38 // goroutine starts running on the same P as the last event [timestamp, goroutine id]
EvGoUnblockLocal EventType = 39 // goroutine is unblocked on the same P as the last event [timestamp, goroutine id, stack]
EvGoSysExitLocal EventType = 40 // syscall exit on the same P as the last event [timestamp, goroutine id, real timestamp]
EvGoStartLabel EventType = 41 // goroutine starts running with label [timestamp, goroutine id, seq, label string id]
EvGoBlockGC EventType = 42 // goroutine blocks on GC assist [timestamp, stack]
EvGCMarkAssistStart EventType = 43 // GC mark assist start [timestamp, stack]
EvGCMarkAssistDone EventType = 44 // GC mark assist done [timestamp]
EvUserTaskCreate EventType = 45 // trace.NewTask [timestamp, internal task id, internal parent id, stack, name string]
EvUserTaskEnd EventType = 46 // end of task [timestamp, internal task id, stack]
EvUserRegion EventType = 47 // trace.WithRegion [timestamp, internal task id, mode(0:start, 1:end), name string]
EvUserLog EventType = 48 // trace.Log [timestamp, internal id, key string id, stack, value string]
EvCPUSample EventType = 49 // CPU profiling sample [timestamp, stack, real timestamp, real P id (-1 when absent), goroutine id]
EvCount EventType = 50
)
var EventDescriptions = [256]struct {
Name string
minVersion version.Version
Stack bool
Args []string
SArgs []string // string arguments
}{
EvNone: {"None", 5, false, []string{}, nil},
EvBatch: {"Batch", 5, false, []string{"p", "ticks"}, nil}, // in 1.5 format it was {"p", "seq", "ticks"}
EvFrequency: {"Frequency", 5, false, []string{"freq"}, nil}, // in 1.5 format it was {"freq", "unused"}
EvStack: {"Stack", 5, false, []string{"id", "siz"}, nil},
EvGomaxprocs: {"Gomaxprocs", 5, true, []string{"procs"}, nil},
EvProcStart: {"ProcStart", 5, false, []string{"thread"}, nil},
EvProcStop: {"ProcStop", 5, false, []string{}, nil},
EvGCStart: {"GCStart", 5, true, []string{"seq"}, nil}, // in 1.5 format it was {}
EvGCDone: {"GCDone", 5, false, []string{}, nil},
EvSTWStart: {"GCSTWStart", 5, false, []string{"kindid"}, []string{"kind"}}, // <= 1.9, args was {} (implicitly {0})
EvSTWDone: {"GCSTWDone", 5, false, []string{}, nil},
EvGCSweepStart: {"GCSweepStart", 5, true, []string{}, nil},
EvGCSweepDone: {"GCSweepDone", 5, false, []string{"swept", "reclaimed"}, nil}, // before 1.9, format was {}
EvGoCreate: {"GoCreate", 5, true, []string{"g", "stack"}, nil},
EvGoStart: {"GoStart", 5, false, []string{"g", "seq"}, nil}, // in 1.5 format it was {"g"}
EvGoEnd: {"GoEnd", 5, false, []string{}, nil},
EvGoStop: {"GoStop", 5, true, []string{}, nil},
EvGoSched: {"GoSched", 5, true, []string{}, nil},
EvGoPreempt: {"GoPreempt", 5, true, []string{}, nil},
EvGoSleep: {"GoSleep", 5, true, []string{}, nil},
EvGoBlock: {"GoBlock", 5, true, []string{}, nil},
EvGoUnblock: {"GoUnblock", 5, true, []string{"g", "seq"}, nil}, // in 1.5 format it was {"g"}
EvGoBlockSend: {"GoBlockSend", 5, true, []string{}, nil},
EvGoBlockRecv: {"GoBlockRecv", 5, true, []string{}, nil},
EvGoBlockSelect: {"GoBlockSelect", 5, true, []string{}, nil},
EvGoBlockSync: {"GoBlockSync", 5, true, []string{}, nil},
EvGoBlockCond: {"GoBlockCond", 5, true, []string{}, nil},
EvGoBlockNet: {"GoBlockNet", 5, true, []string{}, nil},
EvGoSysCall: {"GoSysCall", 5, true, []string{}, nil},
EvGoSysExit: {"GoSysExit", 5, false, []string{"g", "seq", "ts"}, nil},
EvGoSysBlock: {"GoSysBlock", 5, false, []string{}, nil},
EvGoWaiting: {"GoWaiting", 5, false, []string{"g"}, nil},
EvGoInSyscall: {"GoInSyscall", 5, false, []string{"g"}, nil},
EvHeapAlloc: {"HeapAlloc", 5, false, []string{"mem"}, nil},
EvHeapGoal: {"HeapGoal", 5, false, []string{"mem"}, nil},
EvTimerGoroutine: {"TimerGoroutine", 5, false, []string{"g"}, nil}, // in 1.5 format it was {"g", "unused"}
EvFutileWakeup: {"FutileWakeup", 5, false, []string{}, nil},
EvString: {"String", 7, false, []string{}, nil},
EvGoStartLocal: {"GoStartLocal", 7, false, []string{"g"}, nil},
EvGoUnblockLocal: {"GoUnblockLocal", 7, true, []string{"g"}, nil},
EvGoSysExitLocal: {"GoSysExitLocal", 7, false, []string{"g", "ts"}, nil},
EvGoStartLabel: {"GoStartLabel", 8, false, []string{"g", "seq", "labelid"}, []string{"label"}},
EvGoBlockGC: {"GoBlockGC", 8, true, []string{}, nil},
EvGCMarkAssistStart: {"GCMarkAssistStart", 9, true, []string{}, nil},
EvGCMarkAssistDone: {"GCMarkAssistDone", 9, false, []string{}, nil},
EvUserTaskCreate: {"UserTaskCreate", 11, true, []string{"taskid", "pid", "typeid"}, []string{"name"}},
EvUserTaskEnd: {"UserTaskEnd", 11, true, []string{"taskid"}, nil},
EvUserRegion: {"UserRegion", 11, true, []string{"taskid", "mode", "typeid"}, []string{"name"}},
EvUserLog: {"UserLog", 11, true, []string{"id", "keyid"}, []string{"category", "message"}},
EvCPUSample: {"CPUSample", 19, true, []string{"ts", "p", "g"}, nil},
}
//gcassert:inline
func (p *parser) allocateStack(size uint64) []uint64 {
if size == 0 {
return nil
}
// Stacks are plentiful but small. For our "Staticcheck on std" trace with
// 11e6 events, we have roughly 500,000 stacks, using 200 MiB of memory. To
// avoid making 500,000 small allocations we allocate backing arrays 1 MiB
// at a time.
out := p.stacksData
if uint64(len(out)) < size {
out = make([]uint64, 1024*128)
}
p.stacksData = out[size:]
return out[:size:size]
}
func (tr *Trace) STWReason(kindID uint64) STWReason {
if tr.Version < 21 {
if kindID == 0 || kindID == 1 {
return STWReason(kindID + 1)
} else {
return STWUnknown
}
} else if tr.Version == 21 {
if kindID < NumSTWReasons {
return STWReason(kindID)
} else {
return STWUnknown
}
} else {
return STWUnknown
}
}
type STWReason int
const (
STWUnknown STWReason = 0
STWGCMarkTermination STWReason = 1
STWGCSweepTermination STWReason = 2
STWWriteHeapDump STWReason = 3
STWGoroutineProfile STWReason = 4
STWGoroutineProfileCleanup STWReason = 5
STWAllGoroutinesStackTrace STWReason = 6
STWReadMemStats STWReason = 7
STWAllThreadsSyscall STWReason = 8
STWGOMAXPROCS STWReason = 9
STWStartTrace STWReason = 10
STWStopTrace STWReason = 11
STWCountPagesInUse STWReason = 12
STWReadMetricsSlow STWReason = 13
STWReadMemStatsSlow STWReason = 14
STWPageCachePagesLeaked STWReason = 15
STWResetDebugLog STWReason = 16
NumSTWReasons = 17
)
|