1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
|
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by "gen.bash" from internal/trace; DO NOT EDIT.
//go:build go1.23
package trace
import (
"fmt"
"slices"
"strings"
"golang.org/x/exp/trace/internal/tracev2"
"golang.org/x/exp/trace/internal/version"
)
// ordering emulates Go scheduler state for both validation and
// for putting events in the right order.
//
// The interface to ordering consists of two methods: Advance
// and Next. Advance is called to try and advance an event and
// add completed events to the ordering. Next is used to pick
// off events in the ordering.
type ordering struct {
traceVer version.Version
gStates map[GoID]*gState
pStates map[ProcID]*pState // TODO: The keys are dense, so this can be a slice.
mStates map[ThreadID]*mState
activeTasks map[TaskID]taskState
gcSeq uint64
gcState gcState
initialGen uint64
queue queue[Event]
}
// Advance checks if it's valid to proceed with ev which came from thread m.
//
// It assumes the gen value passed to it is monotonically increasing across calls.
//
// If any error is returned, then the trace is broken and trace parsing must cease.
// If it's not valid to advance with ev, but no error was encountered, the caller
// should attempt to advance with other candidate events from other threads. If the
// caller runs out of candidates, the trace is invalid.
//
// If this returns true, Next is guaranteed to return a complete event. However,
// multiple events may be added to the ordering, so the caller should (but is not
// required to) continue to call Next until it is exhausted.
func (o *ordering) Advance(ev *baseEvent, evt *evTable, m ThreadID, gen uint64) (bool, error) {
if o.initialGen == 0 {
// Set the initial gen if necessary.
o.initialGen = gen
}
var curCtx, newCtx schedCtx
curCtx.M = m
newCtx.M = m
var ms *mState
if m == NoThread {
curCtx.P = NoProc
curCtx.G = NoGoroutine
newCtx = curCtx
} else {
// Pull out or create the mState for this event.
var ok bool
ms, ok = o.mStates[m]
if !ok {
ms = &mState{
g: NoGoroutine,
p: NoProc,
}
o.mStates[m] = ms
}
curCtx.P = ms.p
curCtx.G = ms.g
newCtx = curCtx
}
f := orderingDispatch[ev.typ]
if f == nil {
return false, fmt.Errorf("bad event type found while ordering: %v", ev.typ)
}
newCtx, ok, err := f(o, ev, evt, m, gen, curCtx)
if err == nil && ok && ms != nil {
// Update the mState for this event.
ms.p = newCtx.P
ms.g = newCtx.G
}
return ok, err
}
func (o *ordering) evName(typ tracev2.EventType) string {
return o.traceVer.EventName(typ)
}
type orderingHandleFunc func(o *ordering, ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error)
var orderingDispatch = [256]orderingHandleFunc{
// Procs.
tracev2.EvProcsChange: (*ordering).advanceAnnotation,
tracev2.EvProcStart: (*ordering).advanceProcStart,
tracev2.EvProcStop: (*ordering).advanceProcStop,
tracev2.EvProcSteal: (*ordering).advanceProcSteal,
tracev2.EvProcStatus: (*ordering).advanceProcStatus,
// Goroutines.
tracev2.EvGoCreate: (*ordering).advanceGoCreate,
tracev2.EvGoCreateSyscall: (*ordering).advanceGoCreateSyscall,
tracev2.EvGoStart: (*ordering).advanceGoStart,
tracev2.EvGoDestroy: (*ordering).advanceGoStopExec,
tracev2.EvGoDestroySyscall: (*ordering).advanceGoDestroySyscall,
tracev2.EvGoStop: (*ordering).advanceGoStopExec,
tracev2.EvGoBlock: (*ordering).advanceGoStopExec,
tracev2.EvGoUnblock: (*ordering).advanceGoUnblock,
tracev2.EvGoSyscallBegin: (*ordering).advanceGoSyscallBegin,
tracev2.EvGoSyscallEnd: (*ordering).advanceGoSyscallEnd,
tracev2.EvGoSyscallEndBlocked: (*ordering).advanceGoSyscallEndBlocked,
tracev2.EvGoStatus: (*ordering).advanceGoStatus,
// STW.
tracev2.EvSTWBegin: (*ordering).advanceGoRangeBegin,
tracev2.EvSTWEnd: (*ordering).advanceGoRangeEnd,
// GC events.
tracev2.EvGCActive: (*ordering).advanceGCActive,
tracev2.EvGCBegin: (*ordering).advanceGCBegin,
tracev2.EvGCEnd: (*ordering).advanceGCEnd,
tracev2.EvGCSweepActive: (*ordering).advanceGCSweepActive,
tracev2.EvGCSweepBegin: (*ordering).advanceGCSweepBegin,
tracev2.EvGCSweepEnd: (*ordering).advanceGCSweepEnd,
tracev2.EvGCMarkAssistActive: (*ordering).advanceGoRangeActive,
tracev2.EvGCMarkAssistBegin: (*ordering).advanceGoRangeBegin,
tracev2.EvGCMarkAssistEnd: (*ordering).advanceGoRangeEnd,
tracev2.EvHeapAlloc: (*ordering).advanceHeapMetric,
tracev2.EvHeapGoal: (*ordering).advanceHeapMetric,
// Annotations.
tracev2.EvGoLabel: (*ordering).advanceAnnotation,
tracev2.EvUserTaskBegin: (*ordering).advanceUserTaskBegin,
tracev2.EvUserTaskEnd: (*ordering).advanceUserTaskEnd,
tracev2.EvUserRegionBegin: (*ordering).advanceUserRegionBegin,
tracev2.EvUserRegionEnd: (*ordering).advanceUserRegionEnd,
tracev2.EvUserLog: (*ordering).advanceAnnotation,
// Coroutines. Added in Go 1.23.
tracev2.EvGoSwitch: (*ordering).advanceGoSwitch,
tracev2.EvGoSwitchDestroy: (*ordering).advanceGoSwitch,
tracev2.EvGoCreateBlocked: (*ordering).advanceGoCreate,
// GoStatus event with a stack. Added in Go 1.23.
tracev2.EvGoStatusStack: (*ordering).advanceGoStatus,
// Experimental events.
// Experimental heap span events. Added in Go 1.23.
tracev2.EvSpan: (*ordering).advanceAllocFree,
tracev2.EvSpanAlloc: (*ordering).advanceAllocFree,
tracev2.EvSpanFree: (*ordering).advanceAllocFree,
// Experimental heap object events. Added in Go 1.23.
tracev2.EvHeapObject: (*ordering).advanceAllocFree,
tracev2.EvHeapObjectAlloc: (*ordering).advanceAllocFree,
tracev2.EvHeapObjectFree: (*ordering).advanceAllocFree,
// Experimental goroutine stack events. Added in Go 1.23.
tracev2.EvGoroutineStack: (*ordering).advanceAllocFree,
tracev2.EvGoroutineStackAlloc: (*ordering).advanceAllocFree,
tracev2.EvGoroutineStackFree: (*ordering).advanceAllocFree,
}
func (o *ordering) advanceProcStatus(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
pid := ProcID(ev.args[0])
status := tracev2.ProcStatus(ev.args[1])
if int(status) >= len(tracev2ProcStatus2ProcState) {
return curCtx, false, fmt.Errorf("invalid status for proc %d: %d", pid, status)
}
oldState := tracev2ProcStatus2ProcState[status]
if s, ok := o.pStates[pid]; ok {
if status == tracev2.ProcSyscallAbandoned && s.status == tracev2.ProcSyscall {
// ProcSyscallAbandoned is a special case of ProcSyscall. It indicates a
// potential loss of information, but if we're already in ProcSyscall,
// we haven't lost the relevant information. Promote the status and advance.
oldState = ProcRunning
ev.args[1] = uint64(tracev2.ProcSyscall)
} else if status == tracev2.ProcSyscallAbandoned && s.status == tracev2.ProcSyscallAbandoned {
// If we're passing through ProcSyscallAbandoned, then there's no promotion
// to do. We've lost the M that this P is associated with. However it got there,
// it's going to appear as idle in the API, so pass through as idle.
oldState = ProcIdle
ev.args[1] = uint64(tracev2.ProcSyscallAbandoned)
} else if s.status != status {
return curCtx, false, fmt.Errorf("inconsistent status for proc %d: old %v vs. new %v", pid, s.status, status)
}
s.seq = makeSeq(gen, 0) // Reset seq.
} else {
o.pStates[pid] = &pState{id: pid, status: status, seq: makeSeq(gen, 0)}
if gen == o.initialGen {
oldState = ProcUndetermined
} else {
oldState = ProcNotExist
}
}
ev.extra(version.Go122)[0] = uint64(oldState) // Smuggle in the old state for StateTransition.
// Bind the proc to the new context, if it's running.
newCtx := curCtx
if status == tracev2.ProcRunning || status == tracev2.ProcSyscall {
newCtx.P = pid
}
// If we're advancing through ProcSyscallAbandoned *but* oldState is running then we've
// promoted it to ProcSyscall. However, because it's ProcSyscallAbandoned, we know this
// P is about to get stolen and its status very likely isn't being emitted by the same
// thread it was bound to. Since this status is Running -> Running and Running is binding,
// we need to make sure we emit it in the right context: the context to which it is bound.
// Find it, and set our current context to it.
if status == tracev2.ProcSyscallAbandoned && oldState == ProcRunning {
// N.B. This is slow but it should be fairly rare.
found := false
for mid, ms := range o.mStates {
if ms.p == pid {
curCtx.M = mid
curCtx.P = pid
curCtx.G = ms.g
found = true
}
}
if !found {
return curCtx, false, fmt.Errorf("failed to find sched context for proc %d that's about to be stolen", pid)
}
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return newCtx, true, nil
}
func (o *ordering) advanceProcStart(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
pid := ProcID(ev.args[0])
seq := makeSeq(gen, ev.args[1])
// Try to advance. We might fail here due to sequencing, because the P hasn't
// had a status emitted, or because we already have a P and we're in a syscall,
// and we haven't observed that it was stolen from us yet.
state, ok := o.pStates[pid]
if !ok || state.status != tracev2.ProcIdle || !seq.succeeds(state.seq) || curCtx.P != NoProc {
// We can't make an inference as to whether this is bad. We could just be seeing
// a ProcStart on a different M before the proc's state was emitted, or before we
// got to the right point in the trace.
//
// Note that we also don't advance here if we have a P and we're in a syscall.
return curCtx, false, nil
}
// We can advance this P. Check some invariants.
//
// We might have a goroutine if a goroutine is exiting a syscall.
reqs := schedReqs{M: mustHave, P: mustNotHave, G: mayHave}
if err := validateCtx(curCtx, reqs); err != nil {
return curCtx, false, err
}
state.status = tracev2.ProcRunning
state.seq = seq
newCtx := curCtx
newCtx.P = pid
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return newCtx, true, nil
}
func (o *ordering) advanceProcStop(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// We must be able to advance this P.
//
// There are 2 ways a P can stop: ProcStop and ProcSteal. ProcStop is used when the P
// is stopped by the same M that started it, while ProcSteal is used when another M
// steals the P by stopping it from a distance.
//
// Since a P is bound to an M, and we're stopping on the same M we started, it must
// always be possible to advance the current M's P from a ProcStop. This is also why
// ProcStop doesn't need a sequence number.
state, ok := o.pStates[curCtx.P]
if !ok {
return curCtx, false, fmt.Errorf("event %s for proc (%v) that doesn't exist", o.evName(ev.typ), curCtx.P)
}
if state.status != tracev2.ProcRunning && state.status != tracev2.ProcSyscall {
return curCtx, false, fmt.Errorf("%s event for proc that's not %s or %s", o.evName(ev.typ), tracev2.ProcRunning, tracev2.ProcSyscall)
}
reqs := schedReqs{M: mustHave, P: mustHave, G: mayHave}
if err := validateCtx(curCtx, reqs); err != nil {
return curCtx, false, err
}
state.status = tracev2.ProcIdle
newCtx := curCtx
newCtx.P = NoProc
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return newCtx, true, nil
}
func (o *ordering) advanceProcSteal(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
pid := ProcID(ev.args[0])
seq := makeSeq(gen, ev.args[1])
state, ok := o.pStates[pid]
if !ok || (state.status != tracev2.ProcSyscall && state.status != tracev2.ProcSyscallAbandoned) || !seq.succeeds(state.seq) {
// We can't make an inference as to whether this is bad. We could just be seeing
// a ProcStart on a different M before the proc's state was emitted, or before we
// got to the right point in the trace.
return curCtx, false, nil
}
// We can advance this P. Check some invariants.
reqs := schedReqs{M: mustHave, P: mayHave, G: mayHave}
if err := validateCtx(curCtx, reqs); err != nil {
return curCtx, false, err
}
// Smuggle in the P state that let us advance so we can surface information to the event.
// Specifically, we need to make sure that the event is interpreted not as a transition of
// ProcRunning -> ProcIdle but ProcIdle -> ProcIdle instead.
//
// ProcRunning is binding, but we may be running with a P on the current M and we can't
// bind another P. This P is about to go ProcIdle anyway.
oldStatus := state.status
ev.extra(version.Go122)[0] = uint64(oldStatus)
// Update the P's status and sequence number.
state.status = tracev2.ProcIdle
state.seq = seq
// If we've lost information then don't try to do anything with the M.
// It may have moved on and we can't be sure.
if oldStatus == tracev2.ProcSyscallAbandoned {
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
// Validate that the M we're stealing from is what we expect.
mid := ThreadID(ev.args[2]) // The M we're stealing from.
newCtx := curCtx
if mid == curCtx.M {
// We're stealing from ourselves. This behaves like a ProcStop.
if curCtx.P != pid {
return curCtx, false, fmt.Errorf("tried to self-steal proc %d (thread %d), but got proc %d instead", pid, mid, curCtx.P)
}
newCtx.P = NoProc
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return newCtx, true, nil
}
// We're stealing from some other M.
mState, ok := o.mStates[mid]
if !ok {
return curCtx, false, fmt.Errorf("stole proc from non-existent thread %d", mid)
}
// Make sure we're actually stealing the right P.
if mState.p != pid {
return curCtx, false, fmt.Errorf("tried to steal proc %d from thread %d, but got proc %d instead", pid, mid, mState.p)
}
// Tell the M it has no P so it can proceed.
//
// This is safe because we know the P was in a syscall and
// the other M must be trying to get out of the syscall.
// GoSyscallEndBlocked cannot advance until the corresponding
// M loses its P.
mState.p = NoProc
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return newCtx, true, nil
}
func (o *ordering) advanceGoStatus(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
gid := GoID(ev.args[0])
mid := ThreadID(ev.args[1])
status := tracev2.GoStatus(ev.args[2])
if int(status) >= len(tracev2GoStatus2GoState) {
return curCtx, false, fmt.Errorf("invalid status for goroutine %d: %d", gid, status)
}
oldState := tracev2GoStatus2GoState[status]
if s, ok := o.gStates[gid]; ok {
if s.status != status {
return curCtx, false, fmt.Errorf("inconsistent status for goroutine %d: old %v vs. new %v", gid, s.status, status)
}
s.seq = makeSeq(gen, 0) // Reset seq.
} else if gen == o.initialGen {
// Set the state.
o.gStates[gid] = &gState{id: gid, status: status, seq: makeSeq(gen, 0)}
oldState = GoUndetermined
} else {
return curCtx, false, fmt.Errorf("found goroutine status for new goroutine after the first generation: id=%v status=%v", gid, status)
}
ev.args[2] = uint64(oldState)<<32 | uint64(status) // Smuggle in the old state for StateTransition.
newCtx := curCtx
switch status {
case tracev2.GoRunning:
// Bind the goroutine to the new context, since it's running.
newCtx.G = gid
case tracev2.GoSyscall:
if mid == NoThread {
return curCtx, false, fmt.Errorf("found goroutine %d in syscall without a thread", gid)
}
// Is the syscall on this thread? If so, bind it to the context.
// Otherwise, we're talking about a G sitting in a syscall on an M.
// Validate the named M.
if mid == curCtx.M {
if gen != o.initialGen && curCtx.G != gid {
// If this isn't the first generation, we *must* have seen this
// binding occur already. Even if the G was blocked in a syscall
// for multiple generations since trace start, we would have seen
// a previous GoStatus event that bound the goroutine to an M.
return curCtx, false, fmt.Errorf("inconsistent thread for syscalling goroutine %d: thread has goroutine %d", gid, curCtx.G)
}
newCtx.G = gid
break
}
// Now we're talking about a thread and goroutine that have been
// blocked on a syscall for the entire generation. This case must
// not have a P; the runtime makes sure that all Ps are traced at
// the beginning of a generation, which involves taking a P back
// from every thread.
ms, ok := o.mStates[mid]
if ok {
// This M has been seen. That means we must have seen this
// goroutine go into a syscall on this thread at some point.
if ms.g != gid {
// But the G on the M doesn't match. Something's wrong.
return curCtx, false, fmt.Errorf("inconsistent thread for syscalling goroutine %d: thread has goroutine %d", gid, ms.g)
}
// This case is just a Syscall->Syscall event, which needs to
// appear as having the G currently bound to this M.
curCtx.G = ms.g
} else if !ok {
// The M hasn't been seen yet. That means this goroutine
// has just been sitting in a syscall on this M. Create
// a state for it.
o.mStates[mid] = &mState{g: gid, p: NoProc}
// Don't set curCtx.G in this case because this event is the
// binding event (and curCtx represents the "before" state).
}
// Update the current context to the M we're talking about.
curCtx.M = mid
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return newCtx, true, nil
}
func (o *ordering) advanceGoCreate(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// Goroutines must be created on a running P, but may or may not be created
// by a running goroutine.
reqs := schedReqs{M: mustHave, P: mustHave, G: mayHave}
if err := validateCtx(curCtx, reqs); err != nil {
return curCtx, false, err
}
// If we have a goroutine, it must be running.
if state, ok := o.gStates[curCtx.G]; ok && state.status != tracev2.GoRunning {
return curCtx, false, fmt.Errorf("%s event for goroutine that's not %s", o.evName(ev.typ), GoRunning)
}
// This goroutine created another. Add a state for it.
newgid := GoID(ev.args[0])
if _, ok := o.gStates[newgid]; ok {
return curCtx, false, fmt.Errorf("tried to create goroutine (%v) that already exists", newgid)
}
status := tracev2.GoRunnable
if ev.typ == tracev2.EvGoCreateBlocked {
status = tracev2.GoWaiting
}
o.gStates[newgid] = &gState{id: newgid, status: status, seq: makeSeq(gen, 0)}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceGoStopExec(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// These are goroutine events that all require an active running
// goroutine on some thread. They must *always* be advance-able,
// since running goroutines are bound to their M.
if err := validateCtx(curCtx, userGoReqs); err != nil {
return curCtx, false, err
}
state, ok := o.gStates[curCtx.G]
if !ok {
return curCtx, false, fmt.Errorf("event %s for goroutine (%v) that doesn't exist", o.evName(ev.typ), curCtx.G)
}
if state.status != tracev2.GoRunning {
return curCtx, false, fmt.Errorf("%s event for goroutine that's not %s", o.evName(ev.typ), GoRunning)
}
// Handle each case slightly differently; we just group them together
// because they have shared preconditions.
newCtx := curCtx
switch ev.typ {
case tracev2.EvGoDestroy:
// This goroutine is exiting itself.
delete(o.gStates, curCtx.G)
newCtx.G = NoGoroutine
case tracev2.EvGoStop:
// Goroutine stopped (yielded). It's runnable but not running on this M.
state.status = tracev2.GoRunnable
newCtx.G = NoGoroutine
case tracev2.EvGoBlock:
// Goroutine blocked. It's waiting now and not running on this M.
state.status = tracev2.GoWaiting
newCtx.G = NoGoroutine
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return newCtx, true, nil
}
func (o *ordering) advanceGoStart(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
gid := GoID(ev.args[0])
seq := makeSeq(gen, ev.args[1])
state, ok := o.gStates[gid]
if !ok || state.status != tracev2.GoRunnable || !seq.succeeds(state.seq) {
// We can't make an inference as to whether this is bad. We could just be seeing
// a GoStart on a different M before the goroutine was created, before it had its
// state emitted, or before we got to the right point in the trace yet.
return curCtx, false, nil
}
// We can advance this goroutine. Check some invariants.
reqs := schedReqs{M: mustHave, P: mustHave, G: mustNotHave}
if err := validateCtx(curCtx, reqs); err != nil {
return curCtx, false, err
}
state.status = tracev2.GoRunning
state.seq = seq
newCtx := curCtx
newCtx.G = gid
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return newCtx, true, nil
}
func (o *ordering) advanceGoUnblock(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// N.B. These both reference the goroutine to unblock, not the current goroutine.
gid := GoID(ev.args[0])
seq := makeSeq(gen, ev.args[1])
state, ok := o.gStates[gid]
if !ok || state.status != tracev2.GoWaiting || !seq.succeeds(state.seq) {
// We can't make an inference as to whether this is bad. We could just be seeing
// a GoUnblock on a different M before the goroutine was created and blocked itself,
// before it had its state emitted, or before we got to the right point in the trace yet.
return curCtx, false, nil
}
state.status = tracev2.GoRunnable
state.seq = seq
// N.B. No context to validate. Basically anything can unblock
// a goroutine (e.g. sysmon).
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceGoSwitch(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// GoSwitch and GoSwitchDestroy represent a trio of events:
// - Unblock of the goroutine to switch to.
// - Block or destroy of the current goroutine.
// - Start executing the next goroutine.
//
// Because it acts like a GoStart for the next goroutine, we can
// only advance it if the sequence numbers line up.
//
// The current goroutine on the thread must be actively running.
if err := validateCtx(curCtx, userGoReqs); err != nil {
return curCtx, false, err
}
curGState, ok := o.gStates[curCtx.G]
if !ok {
return curCtx, false, fmt.Errorf("event %s for goroutine (%v) that doesn't exist", o.evName(ev.typ), curCtx.G)
}
if curGState.status != tracev2.GoRunning {
return curCtx, false, fmt.Errorf("%s event for goroutine that's not %s", o.evName(ev.typ), GoRunning)
}
nextg := GoID(ev.args[0])
seq := makeSeq(gen, ev.args[1]) // seq is for nextg, not curCtx.G.
nextGState, ok := o.gStates[nextg]
if !ok || nextGState.status != tracev2.GoWaiting || !seq.succeeds(nextGState.seq) {
// We can't make an inference as to whether this is bad. We could just be seeing
// a GoSwitch on a different M before the goroutine was created, before it had its
// state emitted, or before we got to the right point in the trace yet.
return curCtx, false, nil
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
// Update the state of the executing goroutine and emit an event for it
// (GoSwitch and GoSwitchDestroy will be interpreted as GoUnblock events
// for nextg).
switch ev.typ {
case tracev2.EvGoSwitch:
// Goroutine blocked. It's waiting now and not running on this M.
curGState.status = tracev2.GoWaiting
// Emit a GoBlock event.
// TODO(mknyszek): Emit a reason.
o.queue.push(makeEvent(evt, curCtx, tracev2.EvGoBlock, ev.time, 0 /* no reason */, 0 /* no stack */))
case tracev2.EvGoSwitchDestroy:
// This goroutine is exiting itself.
delete(o.gStates, curCtx.G)
// Emit a GoDestroy event.
o.queue.push(makeEvent(evt, curCtx, tracev2.EvGoDestroy, ev.time))
}
// Update the state of the next goroutine.
nextGState.status = tracev2.GoRunning
nextGState.seq = seq
newCtx := curCtx
newCtx.G = nextg
// Queue an event for the next goroutine starting to run.
startCtx := curCtx
startCtx.G = NoGoroutine
o.queue.push(makeEvent(evt, startCtx, tracev2.EvGoStart, ev.time, uint64(nextg), ev.args[1]))
return newCtx, true, nil
}
func (o *ordering) advanceGoSyscallBegin(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// Entering a syscall requires an active running goroutine with a
// proc on some thread. It is always advancable.
if err := validateCtx(curCtx, userGoReqs); err != nil {
return curCtx, false, err
}
state, ok := o.gStates[curCtx.G]
if !ok {
return curCtx, false, fmt.Errorf("event %s for goroutine (%v) that doesn't exist", o.evName(ev.typ), curCtx.G)
}
if state.status != tracev2.GoRunning {
return curCtx, false, fmt.Errorf("%s event for goroutine that's not %s", o.evName(ev.typ), GoRunning)
}
// Goroutine entered a syscall. It's still running on this P and M.
state.status = tracev2.GoSyscall
pState, ok := o.pStates[curCtx.P]
if !ok {
return curCtx, false, fmt.Errorf("uninitialized proc %d found during %s", curCtx.P, o.evName(ev.typ))
}
pState.status = tracev2.ProcSyscall
// Validate the P sequence number on the event and advance it.
//
// We have a P sequence number for what is supposed to be a goroutine event
// so that we can correctly model P stealing. Without this sequence number here,
// the syscall from which a ProcSteal event is stealing can be ambiguous in the
// face of broken timestamps. See the go122-syscall-steal-proc-ambiguous test for
// more details.
//
// Note that because this sequence number only exists as a tool for disambiguation,
// we can enforce that we have the right sequence number at this point; we don't need
// to back off and see if any other events will advance. This is a running P.
pSeq := makeSeq(gen, ev.args[0])
if !pSeq.succeeds(pState.seq) {
return curCtx, false, fmt.Errorf("failed to advance %s: can't make sequence: %s -> %s", o.evName(ev.typ), pState.seq, pSeq)
}
pState.seq = pSeq
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceGoSyscallEnd(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// This event is always advance-able because it happens on the same
// thread that EvGoSyscallStart happened, and the goroutine can't leave
// that thread until its done.
if err := validateCtx(curCtx, userGoReqs); err != nil {
return curCtx, false, err
}
state, ok := o.gStates[curCtx.G]
if !ok {
return curCtx, false, fmt.Errorf("event %s for goroutine (%v) that doesn't exist", o.evName(ev.typ), curCtx.G)
}
if state.status != tracev2.GoSyscall {
return curCtx, false, fmt.Errorf("%s event for goroutine that's not %s", o.evName(ev.typ), GoRunning)
}
state.status = tracev2.GoRunning
// Transfer the P back to running from syscall.
pState, ok := o.pStates[curCtx.P]
if !ok {
return curCtx, false, fmt.Errorf("uninitialized proc %d found during %s", curCtx.P, o.evName(ev.typ))
}
if pState.status != tracev2.ProcSyscall {
return curCtx, false, fmt.Errorf("expected proc %d in state %v, but got %v instead", curCtx.P, tracev2.ProcSyscall, pState.status)
}
pState.status = tracev2.ProcRunning
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceGoSyscallEndBlocked(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// This event becomes advanceable when its P is not in a syscall state
// (lack of a P altogether is also acceptable for advancing).
// The transfer out of ProcSyscall can happen either voluntarily via
// ProcStop or involuntarily via ProcSteal. We may also acquire a new P
// before we get here (after the transfer out) but that's OK: that new
// P won't be in the ProcSyscall state anymore.
//
// Basically: while we have a preemptible P, don't advance, because we
// *know* from the event that we're going to lose it at some point during
// the syscall. We shouldn't advance until that happens.
if curCtx.P != NoProc {
pState, ok := o.pStates[curCtx.P]
if !ok {
return curCtx, false, fmt.Errorf("uninitialized proc %d found during %s", curCtx.P, o.evName(ev.typ))
}
if pState.status == tracev2.ProcSyscall {
return curCtx, false, nil
}
}
// As mentioned above, we may have a P here if we ProcStart
// before this event.
if err := validateCtx(curCtx, schedReqs{M: mustHave, P: mayHave, G: mustHave}); err != nil {
return curCtx, false, err
}
state, ok := o.gStates[curCtx.G]
if !ok {
return curCtx, false, fmt.Errorf("event %s for goroutine (%v) that doesn't exist", o.evName(ev.typ), curCtx.G)
}
if state.status != tracev2.GoSyscall {
return curCtx, false, fmt.Errorf("%s event for goroutine that's not %s", o.evName(ev.typ), GoRunning)
}
newCtx := curCtx
newCtx.G = NoGoroutine
state.status = tracev2.GoRunnable
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return newCtx, true, nil
}
func (o *ordering) advanceGoCreateSyscall(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// This event indicates that a goroutine is effectively
// being created out of a cgo callback. Such a goroutine
// is 'created' in the syscall state.
if err := validateCtx(curCtx, schedReqs{M: mustHave, P: mayHave, G: mustNotHave}); err != nil {
return curCtx, false, err
}
// This goroutine is effectively being created. Add a state for it.
newgid := GoID(ev.args[0])
if _, ok := o.gStates[newgid]; ok {
return curCtx, false, fmt.Errorf("tried to create goroutine (%v) in syscall that already exists", newgid)
}
o.gStates[newgid] = &gState{id: newgid, status: tracev2.GoSyscall, seq: makeSeq(gen, 0)}
// Goroutine is executing. Bind it to the context.
newCtx := curCtx
newCtx.G = newgid
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return newCtx, true, nil
}
func (o *ordering) advanceGoDestroySyscall(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// This event indicates that a goroutine created for a
// cgo callback is disappearing, either because the callback
// ending or the C thread that called it is being destroyed.
//
// Also, treat this as if we lost our P too.
// The thread ID may be reused by the platform and we'll get
// really confused if we try to steal the P is this is running
// with later. The new M with the same ID could even try to
// steal back this P from itself!
//
// The runtime is careful to make sure that any GoCreateSyscall
// event will enter the runtime emitting events for reacquiring a P.
//
// Note: we might have a P here. The P might not be released
// eagerly by the runtime, and it might get stolen back later
// (or never again, if the program is going to exit).
if err := validateCtx(curCtx, schedReqs{M: mustHave, P: mayHave, G: mustHave}); err != nil {
return curCtx, false, err
}
// Check to make sure the goroutine exists in the right state.
state, ok := o.gStates[curCtx.G]
if !ok {
return curCtx, false, fmt.Errorf("event %s for goroutine (%v) that doesn't exist", o.evName(ev.typ), curCtx.G)
}
if state.status != tracev2.GoSyscall {
return curCtx, false, fmt.Errorf("%s event for goroutine that's not %v", o.evName(ev.typ), GoSyscall)
}
// This goroutine is exiting itself.
delete(o.gStates, curCtx.G)
newCtx := curCtx
newCtx.G = NoGoroutine
// If we have a proc, then we're dissociating from it now. See the comment at the top of the case.
if curCtx.P != NoProc {
pState, ok := o.pStates[curCtx.P]
if !ok {
return curCtx, false, fmt.Errorf("found invalid proc %d during %s", curCtx.P, o.evName(ev.typ))
}
if pState.status != tracev2.ProcSyscall {
return curCtx, false, fmt.Errorf("proc %d in unexpected state %s during %s", curCtx.P, pState.status, o.evName(ev.typ))
}
// See the go122-create-syscall-reuse-thread-id test case for more details.
pState.status = tracev2.ProcSyscallAbandoned
newCtx.P = NoProc
// Queue an extra self-ProcSteal event.
extra := makeEvent(evt, curCtx, tracev2.EvProcSteal, ev.time, uint64(curCtx.P))
extra.base.extra(version.Go122)[0] = uint64(tracev2.ProcSyscall)
o.queue.push(extra)
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return newCtx, true, nil
}
func (o *ordering) advanceUserTaskBegin(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// Handle tasks. Tasks are interesting because:
// - There's no Begin event required to reference a task.
// - End for a particular task ID can appear multiple times.
// As a result, there's very little to validate. The only
// thing we have to be sure of is that a task didn't begin
// after it had already begun. Task IDs are allowed to be
// reused, so we don't care about a Begin after an End.
id := TaskID(ev.args[0])
if _, ok := o.activeTasks[id]; ok {
return curCtx, false, fmt.Errorf("task ID conflict: %d", id)
}
// Get the parent ID, but don't validate it. There's no guarantee
// we actually have information on whether it's active.
parentID := TaskID(ev.args[1])
if parentID == BackgroundTask {
// Note: a value of 0 here actually means no parent, *not* the
// background task. Automatic background task attachment only
// applies to regions.
parentID = NoTask
ev.args[1] = uint64(NoTask)
}
// Validate the name and record it. We'll need to pass it through to
// EvUserTaskEnd.
nameID := stringID(ev.args[2])
name, ok := evt.strings.get(nameID)
if !ok {
return curCtx, false, fmt.Errorf("invalid string ID %v for %v event", nameID, ev.typ)
}
o.activeTasks[id] = taskState{name: name, parentID: parentID}
if err := validateCtx(curCtx, userGoReqs); err != nil {
return curCtx, false, err
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceUserTaskEnd(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
id := TaskID(ev.args[0])
if ts, ok := o.activeTasks[id]; ok {
// Smuggle the task info. This may happen in a different generation,
// which may not have the name in its string table. Add it to the extra
// strings table so we can look it up later.
ev.extra(version.Go122)[0] = uint64(ts.parentID)
ev.extra(version.Go122)[1] = uint64(evt.addExtraString(ts.name))
delete(o.activeTasks, id)
} else {
// Explicitly clear the task info.
ev.extra(version.Go122)[0] = uint64(NoTask)
ev.extra(version.Go122)[1] = uint64(evt.addExtraString(""))
}
if err := validateCtx(curCtx, userGoReqs); err != nil {
return curCtx, false, err
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceUserRegionBegin(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
if err := validateCtx(curCtx, userGoReqs); err != nil {
return curCtx, false, err
}
tid := TaskID(ev.args[0])
nameID := stringID(ev.args[1])
name, ok := evt.strings.get(nameID)
if !ok {
return curCtx, false, fmt.Errorf("invalid string ID %v for %v event", nameID, ev.typ)
}
gState, ok := o.gStates[curCtx.G]
if !ok {
return curCtx, false, fmt.Errorf("encountered EvUserRegionBegin without known state for current goroutine %d", curCtx.G)
}
if err := gState.beginRegion(userRegion{tid, name}); err != nil {
return curCtx, false, err
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceUserRegionEnd(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
if err := validateCtx(curCtx, userGoReqs); err != nil {
return curCtx, false, err
}
tid := TaskID(ev.args[0])
nameID := stringID(ev.args[1])
name, ok := evt.strings.get(nameID)
if !ok {
return curCtx, false, fmt.Errorf("invalid string ID %v for %v event", nameID, ev.typ)
}
gState, ok := o.gStates[curCtx.G]
if !ok {
return curCtx, false, fmt.Errorf("encountered EvUserRegionEnd without known state for current goroutine %d", curCtx.G)
}
if err := gState.endRegion(userRegion{tid, name}); err != nil {
return curCtx, false, err
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
// Handle the GC mark phase.
//
// We have sequence numbers for both start and end because they
// can happen on completely different threads. We want an explicit
// partial order edge between start and end here, otherwise we're
// relying entirely on timestamps to make sure we don't advance a
// GCEnd for a _different_ GC cycle if timestamps are wildly broken.
func (o *ordering) advanceGCActive(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
seq := ev.args[0]
if gen == o.initialGen {
if o.gcState != gcUndetermined {
return curCtx, false, fmt.Errorf("GCActive in the first generation isn't first GC event")
}
o.gcSeq = seq
o.gcState = gcRunning
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
if seq != o.gcSeq+1 {
// This is not the right GC cycle.
return curCtx, false, nil
}
if o.gcState != gcRunning {
return curCtx, false, fmt.Errorf("encountered GCActive while GC was not in progress")
}
o.gcSeq = seq
if err := validateCtx(curCtx, userGoReqs); err != nil {
return curCtx, false, err
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceGCBegin(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
seq := ev.args[0]
if o.gcState == gcUndetermined {
o.gcSeq = seq
o.gcState = gcRunning
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
if seq != o.gcSeq+1 {
// This is not the right GC cycle.
return curCtx, false, nil
}
if o.gcState == gcRunning {
return curCtx, false, fmt.Errorf("encountered GCBegin while GC was already in progress")
}
o.gcSeq = seq
o.gcState = gcRunning
if err := validateCtx(curCtx, userGoReqs); err != nil {
return curCtx, false, err
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceGCEnd(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
seq := ev.args[0]
if seq != o.gcSeq+1 {
// This is not the right GC cycle.
return curCtx, false, nil
}
if o.gcState == gcNotRunning {
return curCtx, false, fmt.Errorf("encountered GCEnd when GC was not in progress")
}
if o.gcState == gcUndetermined {
return curCtx, false, fmt.Errorf("encountered GCEnd when GC was in an undetermined state")
}
o.gcSeq = seq
o.gcState = gcNotRunning
if err := validateCtx(curCtx, userGoReqs); err != nil {
return curCtx, false, err
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceAnnotation(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// Handle simple instantaneous events that require a G.
if err := validateCtx(curCtx, userGoReqs); err != nil {
return curCtx, false, err
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceHeapMetric(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// Handle allocation metrics, which don't require a G.
if err := validateCtx(curCtx, schedReqs{M: mustHave, P: mustHave, G: mayHave}); err != nil {
return curCtx, false, err
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceGCSweepBegin(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// Handle sweep, which is bound to a P and doesn't require a G.
if err := validateCtx(curCtx, schedReqs{M: mustHave, P: mustHave, G: mayHave}); err != nil {
return curCtx, false, err
}
if err := o.pStates[curCtx.P].beginRange(makeRangeType(ev.typ, 0)); err != nil {
return curCtx, false, err
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceGCSweepActive(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
pid := ProcID(ev.args[0])
// N.B. In practice Ps can't block while they're sweeping, so this can only
// ever reference curCtx.P. However, be lenient about this like we are with
// GCMarkAssistActive; there's no reason the runtime couldn't change to block
// in the middle of a sweep.
pState, ok := o.pStates[pid]
if !ok {
return curCtx, false, fmt.Errorf("encountered GCSweepActive for unknown proc %d", pid)
}
if err := pState.activeRange(makeRangeType(ev.typ, 0), gen == o.initialGen); err != nil {
return curCtx, false, err
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceGCSweepEnd(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
if err := validateCtx(curCtx, schedReqs{M: mustHave, P: mustHave, G: mayHave}); err != nil {
return curCtx, false, err
}
_, err := o.pStates[curCtx.P].endRange(ev.typ)
if err != nil {
return curCtx, false, err
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceGoRangeBegin(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// Handle special goroutine-bound event ranges.
if err := validateCtx(curCtx, userGoReqs); err != nil {
return curCtx, false, err
}
desc := stringID(0)
if ev.typ == tracev2.EvSTWBegin {
desc = stringID(ev.args[0])
}
gState, ok := o.gStates[curCtx.G]
if !ok {
return curCtx, false, fmt.Errorf("encountered event of type %d without known state for current goroutine %d", ev.typ, curCtx.G)
}
if err := gState.beginRange(makeRangeType(ev.typ, desc)); err != nil {
return curCtx, false, err
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceGoRangeActive(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
gid := GoID(ev.args[0])
// N.B. Like GoStatus, this can happen at any time, because it can
// reference a non-running goroutine. Don't check anything about the
// current scheduler context.
gState, ok := o.gStates[gid]
if !ok {
return curCtx, false, fmt.Errorf("uninitialized goroutine %d found during %s", gid, o.evName(ev.typ))
}
if err := gState.activeRange(makeRangeType(ev.typ, 0), gen == o.initialGen); err != nil {
return curCtx, false, err
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceGoRangeEnd(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
if err := validateCtx(curCtx, userGoReqs); err != nil {
return curCtx, false, err
}
gState, ok := o.gStates[curCtx.G]
if !ok {
return curCtx, false, fmt.Errorf("encountered event of type %d without known state for current goroutine %d", ev.typ, curCtx.G)
}
desc, err := gState.endRange(ev.typ)
if err != nil {
return curCtx, false, err
}
if ev.typ == tracev2.EvSTWEnd {
// Smuggle the kind into the event.
// Don't use ev.extra here so we have symmetry with STWBegin.
ev.args[0] = uint64(desc)
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
func (o *ordering) advanceAllocFree(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
// Handle simple instantaneous events that may or may not have a P.
if err := validateCtx(curCtx, schedReqs{M: mustHave, P: mayHave, G: mayHave}); err != nil {
return curCtx, false, err
}
o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
return curCtx, true, nil
}
// Next returns the next event in the ordering.
func (o *ordering) Next() (Event, bool) {
return o.queue.pop()
}
// schedCtx represents the scheduling resources associated with an event.
type schedCtx struct {
G GoID
P ProcID
M ThreadID
}
// validateCtx ensures that ctx conforms to some reqs, returning an error if
// it doesn't.
func validateCtx(ctx schedCtx, reqs schedReqs) error {
// Check thread requirements.
if reqs.M == mustHave && ctx.M == NoThread {
return fmt.Errorf("expected a thread but didn't have one")
} else if reqs.M == mustNotHave && ctx.M != NoThread {
return fmt.Errorf("expected no thread but had one")
}
// Check proc requirements.
if reqs.P == mustHave && ctx.P == NoProc {
return fmt.Errorf("expected a proc but didn't have one")
} else if reqs.P == mustNotHave && ctx.P != NoProc {
return fmt.Errorf("expected no proc but had one")
}
// Check goroutine requirements.
if reqs.G == mustHave && ctx.G == NoGoroutine {
return fmt.Errorf("expected a goroutine but didn't have one")
} else if reqs.G == mustNotHave && ctx.G != NoGoroutine {
return fmt.Errorf("expected no goroutine but had one")
}
return nil
}
// gcState is a trinary variable for the current state of the GC.
//
// The third state besides "enabled" and "disabled" is "undetermined."
type gcState uint8
const (
gcUndetermined gcState = iota
gcNotRunning
gcRunning
)
// String returns a human-readable string for the GC state.
func (s gcState) String() string {
switch s {
case gcUndetermined:
return "Undetermined"
case gcNotRunning:
return "NotRunning"
case gcRunning:
return "Running"
}
return "Bad"
}
// userRegion represents a unique user region when attached to some gState.
type userRegion struct {
// name must be a resolved string because the string ID for the same
// string may change across generations, but we care about checking
// the value itself.
taskID TaskID
name string
}
// rangeType is a way to classify special ranges of time.
//
// These typically correspond 1:1 with "Begin" events, but
// they may have an optional subtype that describes the range
// in more detail.
type rangeType struct {
typ tracev2.EventType // "Begin" event.
desc stringID // Optional subtype.
}
// makeRangeType constructs a new rangeType.
func makeRangeType(typ tracev2.EventType, desc stringID) rangeType {
if styp := tracev2.Specs()[typ].StartEv; styp != tracev2.EvNone {
typ = styp
}
return rangeType{typ, desc}
}
// gState is the state of a goroutine at a point in the trace.
type gState struct {
id GoID
status tracev2.GoStatus
seq seqCounter
// regions are the active user regions for this goroutine.
regions []userRegion
// rangeState is the state of special time ranges bound to this goroutine.
rangeState
}
// beginRegion starts a user region on the goroutine.
func (s *gState) beginRegion(r userRegion) error {
s.regions = append(s.regions, r)
return nil
}
// endRegion ends a user region on the goroutine.
func (s *gState) endRegion(r userRegion) error {
if len(s.regions) == 0 {
// We do not know about regions that began before tracing started.
return nil
}
if next := s.regions[len(s.regions)-1]; next != r {
return fmt.Errorf("misuse of region in goroutine %v: region end %v when the inner-most active region start event is %v", s.id, r, next)
}
s.regions = s.regions[:len(s.regions)-1]
return nil
}
// pState is the state of a proc at a point in the trace.
type pState struct {
id ProcID
status tracev2.ProcStatus
seq seqCounter
// rangeState is the state of special time ranges bound to this proc.
rangeState
}
// mState is the state of a thread at a point in the trace.
type mState struct {
g GoID // Goroutine bound to this M. (The goroutine's state is Executing.)
p ProcID // Proc bound to this M. (The proc's state is Executing.)
}
// rangeState represents the state of special time ranges.
type rangeState struct {
// inFlight contains the rangeTypes of any ranges bound to a resource.
inFlight []rangeType
}
// beginRange begins a special range in time on the goroutine.
//
// Returns an error if the range is already in progress.
func (s *rangeState) beginRange(typ rangeType) error {
if s.hasRange(typ) {
return fmt.Errorf("discovered event already in-flight for when starting event %v", tracev2.Specs()[typ.typ].Name)
}
s.inFlight = append(s.inFlight, typ)
return nil
}
// activeRange marks special range in time on the goroutine as active in the
// initial generation, or confirms that it is indeed active in later generations.
func (s *rangeState) activeRange(typ rangeType, isInitialGen bool) error {
if isInitialGen {
if s.hasRange(typ) {
return fmt.Errorf("found named active range already in first gen: %v", typ)
}
s.inFlight = append(s.inFlight, typ)
} else if !s.hasRange(typ) {
return fmt.Errorf("resource is missing active range: %v %v", tracev2.Specs()[typ.typ].Name, s.inFlight)
}
return nil
}
// hasRange returns true if a special time range on the goroutine as in progress.
func (s *rangeState) hasRange(typ rangeType) bool {
return slices.Contains(s.inFlight, typ)
}
// endRange ends a special range in time on the goroutine.
//
// This must line up with the start event type of the range the goroutine is currently in.
func (s *rangeState) endRange(typ tracev2.EventType) (stringID, error) {
st := tracev2.Specs()[typ].StartEv
idx := -1
for i, r := range s.inFlight {
if r.typ == st {
idx = i
break
}
}
if idx < 0 {
return 0, fmt.Errorf("tried to end event %v, but not in-flight", tracev2.Specs()[st].Name)
}
// Swap remove.
desc := s.inFlight[idx].desc
s.inFlight[idx], s.inFlight[len(s.inFlight)-1] = s.inFlight[len(s.inFlight)-1], s.inFlight[idx]
s.inFlight = s.inFlight[:len(s.inFlight)-1]
return desc, nil
}
// seqCounter represents a global sequence counter for a resource.
type seqCounter struct {
gen uint64 // The generation for the local sequence counter seq.
seq uint64 // The sequence number local to the generation.
}
// makeSeq creates a new seqCounter.
func makeSeq(gen, seq uint64) seqCounter {
return seqCounter{gen: gen, seq: seq}
}
// succeeds returns true if a is the immediate successor of b.
func (a seqCounter) succeeds(b seqCounter) bool {
return a.gen == b.gen && a.seq == b.seq+1
}
// String returns a debug string representation of the seqCounter.
func (c seqCounter) String() string {
return fmt.Sprintf("%d (gen=%d)", c.seq, c.gen)
}
func dumpOrdering(order *ordering) string {
var sb strings.Builder
for id, state := range order.gStates {
fmt.Fprintf(&sb, "G %d [status=%s seq=%s]\n", id, state.status, state.seq)
}
fmt.Fprintln(&sb)
for id, state := range order.pStates {
fmt.Fprintf(&sb, "P %d [status=%s seq=%s]\n", id, state.status, state.seq)
}
fmt.Fprintln(&sb)
for id, state := range order.mStates {
fmt.Fprintf(&sb, "M %d [g=%d p=%d]\n", id, state.g, state.p)
}
fmt.Fprintln(&sb)
fmt.Fprintf(&sb, "GC %d %s\n", order.gcSeq, order.gcState)
return sb.String()
}
// taskState represents an active task.
type taskState struct {
// name is the type of the active task.
name string
// parentID is the parent ID of the active task.
parentID TaskID
}
// queue implements a growable ring buffer with a queue API.
type queue[T any] struct {
start, end int
buf []T
}
// push adds a new event to the back of the queue.
func (q *queue[T]) push(value T) {
if q.end-q.start == len(q.buf) {
q.grow()
}
q.buf[q.end%len(q.buf)] = value
q.end++
}
// grow increases the size of the queue.
func (q *queue[T]) grow() {
if len(q.buf) == 0 {
q.buf = make([]T, 2)
return
}
// Create new buf and copy data over.
newBuf := make([]T, len(q.buf)*2)
pivot := q.start % len(q.buf)
first, last := q.buf[pivot:], q.buf[:pivot]
copy(newBuf[:len(first)], first)
copy(newBuf[len(first):], last)
// Update the queue state.
q.start = 0
q.end = len(q.buf)
q.buf = newBuf
}
// pop removes an event from the front of the queue. If the
// queue is empty, it returns an EventBad event.
func (q *queue[T]) pop() (T, bool) {
if q.end-q.start == 0 {
return *new(T), false
}
elem := &q.buf[q.start%len(q.buf)]
value := *elem
*elem = *new(T) // Clear the entry before returning, so we don't hold onto old tables.
q.start++
return value, true
}
// makeEvent creates an Event from the provided information.
//
// It's just a convenience function; it's always OK to construct
// an Event manually if this isn't quite the right way to express
// the contents of the event.
func makeEvent(table *evTable, ctx schedCtx, typ tracev2.EventType, time Time, args ...uint64) Event {
ev := Event{
table: table,
ctx: ctx,
base: baseEvent{
typ: typ,
time: time,
},
}
copy(ev.base.args[:], args)
return ev
}
// schedReqs is a set of constraints on what the scheduling
// context must look like.
type schedReqs struct {
M constraint
P constraint
G constraint
}
// constraint represents a various presence requirements.
type constraint uint8
const (
mustNotHave constraint = iota
mayHave
mustHave
)
// userGoReqs is a common requirement among events that are running
// or are close to running user code.
var userGoReqs = schedReqs{M: mustHave, P: mustHave, G: mustHave}
|