File: order.go

package info (click to toggle)
golang-golang-x-exp 0.0~git20250911.df92998-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,284 kB
  • sloc: ansic: 1,900; objc: 276; sh: 270; asm: 48; makefile: 27
file content (1424 lines) | stat: -rw-r--r-- 53,743 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Code generated by "gen.bash" from internal/trace; DO NOT EDIT.

//go:build go1.23

package trace

import (
	"fmt"
	"slices"
	"strings"

	"golang.org/x/exp/trace/internal/tracev2"
	"golang.org/x/exp/trace/internal/version"
)

// ordering emulates Go scheduler state for both validation and
// for putting events in the right order.
//
// The interface to ordering consists of two methods: Advance
// and Next. Advance is called to try and advance an event and
// add completed events to the ordering. Next is used to pick
// off events in the ordering.
type ordering struct {
	traceVer    version.Version
	gStates     map[GoID]*gState
	pStates     map[ProcID]*pState // TODO: The keys are dense, so this can be a slice.
	mStates     map[ThreadID]*mState
	activeTasks map[TaskID]taskState
	gcSeq       uint64
	gcState     gcState
	initialGen  uint64
	queue       queue[Event]
}

// Advance checks if it's valid to proceed with ev which came from thread m.
//
// It assumes the gen value passed to it is monotonically increasing across calls.
//
// If any error is returned, then the trace is broken and trace parsing must cease.
// If it's not valid to advance with ev, but no error was encountered, the caller
// should attempt to advance with other candidate events from other threads. If the
// caller runs out of candidates, the trace is invalid.
//
// If this returns true, Next is guaranteed to return a complete event. However,
// multiple events may be added to the ordering, so the caller should (but is not
// required to) continue to call Next until it is exhausted.
func (o *ordering) Advance(ev *baseEvent, evt *evTable, m ThreadID, gen uint64) (bool, error) {
	if o.initialGen == 0 {
		// Set the initial gen if necessary.
		o.initialGen = gen
	}

	var curCtx, newCtx schedCtx
	curCtx.M = m
	newCtx.M = m

	var ms *mState
	if m == NoThread {
		curCtx.P = NoProc
		curCtx.G = NoGoroutine
		newCtx = curCtx
	} else {
		// Pull out or create the mState for this event.
		var ok bool
		ms, ok = o.mStates[m]
		if !ok {
			ms = &mState{
				g: NoGoroutine,
				p: NoProc,
			}
			o.mStates[m] = ms
		}
		curCtx.P = ms.p
		curCtx.G = ms.g
		newCtx = curCtx
	}

	f := orderingDispatch[ev.typ]
	if f == nil {
		return false, fmt.Errorf("bad event type found while ordering: %v", ev.typ)
	}
	newCtx, ok, err := f(o, ev, evt, m, gen, curCtx)
	if err == nil && ok && ms != nil {
		// Update the mState for this event.
		ms.p = newCtx.P
		ms.g = newCtx.G
	}
	return ok, err
}

func (o *ordering) evName(typ tracev2.EventType) string {
	return o.traceVer.EventName(typ)
}

type orderingHandleFunc func(o *ordering, ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error)

var orderingDispatch = [256]orderingHandleFunc{
	// Procs.
	tracev2.EvProcsChange: (*ordering).advanceAnnotation,
	tracev2.EvProcStart:   (*ordering).advanceProcStart,
	tracev2.EvProcStop:    (*ordering).advanceProcStop,
	tracev2.EvProcSteal:   (*ordering).advanceProcSteal,
	tracev2.EvProcStatus:  (*ordering).advanceProcStatus,

	// Goroutines.
	tracev2.EvGoCreate:            (*ordering).advanceGoCreate,
	tracev2.EvGoCreateSyscall:     (*ordering).advanceGoCreateSyscall,
	tracev2.EvGoStart:             (*ordering).advanceGoStart,
	tracev2.EvGoDestroy:           (*ordering).advanceGoStopExec,
	tracev2.EvGoDestroySyscall:    (*ordering).advanceGoDestroySyscall,
	tracev2.EvGoStop:              (*ordering).advanceGoStopExec,
	tracev2.EvGoBlock:             (*ordering).advanceGoStopExec,
	tracev2.EvGoUnblock:           (*ordering).advanceGoUnblock,
	tracev2.EvGoSyscallBegin:      (*ordering).advanceGoSyscallBegin,
	tracev2.EvGoSyscallEnd:        (*ordering).advanceGoSyscallEnd,
	tracev2.EvGoSyscallEndBlocked: (*ordering).advanceGoSyscallEndBlocked,
	tracev2.EvGoStatus:            (*ordering).advanceGoStatus,

	// STW.
	tracev2.EvSTWBegin: (*ordering).advanceGoRangeBegin,
	tracev2.EvSTWEnd:   (*ordering).advanceGoRangeEnd,

	// GC events.
	tracev2.EvGCActive:           (*ordering).advanceGCActive,
	tracev2.EvGCBegin:            (*ordering).advanceGCBegin,
	tracev2.EvGCEnd:              (*ordering).advanceGCEnd,
	tracev2.EvGCSweepActive:      (*ordering).advanceGCSweepActive,
	tracev2.EvGCSweepBegin:       (*ordering).advanceGCSweepBegin,
	tracev2.EvGCSweepEnd:         (*ordering).advanceGCSweepEnd,
	tracev2.EvGCMarkAssistActive: (*ordering).advanceGoRangeActive,
	tracev2.EvGCMarkAssistBegin:  (*ordering).advanceGoRangeBegin,
	tracev2.EvGCMarkAssistEnd:    (*ordering).advanceGoRangeEnd,
	tracev2.EvHeapAlloc:          (*ordering).advanceHeapMetric,
	tracev2.EvHeapGoal:           (*ordering).advanceHeapMetric,

	// Annotations.
	tracev2.EvGoLabel:         (*ordering).advanceAnnotation,
	tracev2.EvUserTaskBegin:   (*ordering).advanceUserTaskBegin,
	tracev2.EvUserTaskEnd:     (*ordering).advanceUserTaskEnd,
	tracev2.EvUserRegionBegin: (*ordering).advanceUserRegionBegin,
	tracev2.EvUserRegionEnd:   (*ordering).advanceUserRegionEnd,
	tracev2.EvUserLog:         (*ordering).advanceAnnotation,

	// Coroutines. Added in Go 1.23.
	tracev2.EvGoSwitch:        (*ordering).advanceGoSwitch,
	tracev2.EvGoSwitchDestroy: (*ordering).advanceGoSwitch,
	tracev2.EvGoCreateBlocked: (*ordering).advanceGoCreate,

	// GoStatus event with a stack. Added in Go 1.23.
	tracev2.EvGoStatusStack: (*ordering).advanceGoStatus,

	// Experimental events.

	// Experimental heap span events. Added in Go 1.23.
	tracev2.EvSpan:      (*ordering).advanceAllocFree,
	tracev2.EvSpanAlloc: (*ordering).advanceAllocFree,
	tracev2.EvSpanFree:  (*ordering).advanceAllocFree,

	// Experimental heap object events. Added in Go 1.23.
	tracev2.EvHeapObject:      (*ordering).advanceAllocFree,
	tracev2.EvHeapObjectAlloc: (*ordering).advanceAllocFree,
	tracev2.EvHeapObjectFree:  (*ordering).advanceAllocFree,

	// Experimental goroutine stack events. Added in Go 1.23.
	tracev2.EvGoroutineStack:      (*ordering).advanceAllocFree,
	tracev2.EvGoroutineStackAlloc: (*ordering).advanceAllocFree,
	tracev2.EvGoroutineStackFree:  (*ordering).advanceAllocFree,
}

func (o *ordering) advanceProcStatus(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	pid := ProcID(ev.args[0])
	status := tracev2.ProcStatus(ev.args[1])
	if int(status) >= len(tracev2ProcStatus2ProcState) {
		return curCtx, false, fmt.Errorf("invalid status for proc %d: %d", pid, status)
	}
	oldState := tracev2ProcStatus2ProcState[status]
	if s, ok := o.pStates[pid]; ok {
		if status == tracev2.ProcSyscallAbandoned && s.status == tracev2.ProcSyscall {
			// ProcSyscallAbandoned is a special case of ProcSyscall. It indicates a
			// potential loss of information, but if we're already in ProcSyscall,
			// we haven't lost the relevant information. Promote the status and advance.
			oldState = ProcRunning
			ev.args[1] = uint64(tracev2.ProcSyscall)
		} else if status == tracev2.ProcSyscallAbandoned && s.status == tracev2.ProcSyscallAbandoned {
			// If we're passing through ProcSyscallAbandoned, then there's no promotion
			// to do. We've lost the M that this P is associated with. However it got there,
			// it's going to appear as idle in the API, so pass through as idle.
			oldState = ProcIdle
			ev.args[1] = uint64(tracev2.ProcSyscallAbandoned)
		} else if s.status != status {
			return curCtx, false, fmt.Errorf("inconsistent status for proc %d: old %v vs. new %v", pid, s.status, status)
		}
		s.seq = makeSeq(gen, 0) // Reset seq.
	} else {
		o.pStates[pid] = &pState{id: pid, status: status, seq: makeSeq(gen, 0)}
		if gen == o.initialGen {
			oldState = ProcUndetermined
		} else {
			oldState = ProcNotExist
		}
	}
	ev.extra(version.Go122)[0] = uint64(oldState) // Smuggle in the old state for StateTransition.

	// Bind the proc to the new context, if it's running.
	newCtx := curCtx
	if status == tracev2.ProcRunning || status == tracev2.ProcSyscall {
		newCtx.P = pid
	}
	// If we're advancing through ProcSyscallAbandoned *but* oldState is running then we've
	// promoted it to ProcSyscall. However, because it's ProcSyscallAbandoned, we know this
	// P is about to get stolen and its status very likely isn't being emitted by the same
	// thread it was bound to. Since this status is Running -> Running and Running is binding,
	// we need to make sure we emit it in the right context: the context to which it is bound.
	// Find it, and set our current context to it.
	if status == tracev2.ProcSyscallAbandoned && oldState == ProcRunning {
		// N.B. This is slow but it should be fairly rare.
		found := false
		for mid, ms := range o.mStates {
			if ms.p == pid {
				curCtx.M = mid
				curCtx.P = pid
				curCtx.G = ms.g
				found = true
			}
		}
		if !found {
			return curCtx, false, fmt.Errorf("failed to find sched context for proc %d that's about to be stolen", pid)
		}
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return newCtx, true, nil
}

func (o *ordering) advanceProcStart(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	pid := ProcID(ev.args[0])
	seq := makeSeq(gen, ev.args[1])

	// Try to advance. We might fail here due to sequencing, because the P hasn't
	// had a status emitted, or because we already have a P and we're in a syscall,
	// and we haven't observed that it was stolen from us yet.
	state, ok := o.pStates[pid]
	if !ok || state.status != tracev2.ProcIdle || !seq.succeeds(state.seq) || curCtx.P != NoProc {
		// We can't make an inference as to whether this is bad. We could just be seeing
		// a ProcStart on a different M before the proc's state was emitted, or before we
		// got to the right point in the trace.
		//
		// Note that we also don't advance here if we have a P and we're in a syscall.
		return curCtx, false, nil
	}
	// We can advance this P. Check some invariants.
	//
	// We might have a goroutine if a goroutine is exiting a syscall.
	reqs := schedReqs{M: mustHave, P: mustNotHave, G: mayHave}
	if err := validateCtx(curCtx, reqs); err != nil {
		return curCtx, false, err
	}
	state.status = tracev2.ProcRunning
	state.seq = seq
	newCtx := curCtx
	newCtx.P = pid
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return newCtx, true, nil
}

func (o *ordering) advanceProcStop(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// We must be able to advance this P.
	//
	// There are 2 ways a P can stop: ProcStop and ProcSteal. ProcStop is used when the P
	// is stopped by the same M that started it, while ProcSteal is used when another M
	// steals the P by stopping it from a distance.
	//
	// Since a P is bound to an M, and we're stopping on the same M we started, it must
	// always be possible to advance the current M's P from a ProcStop. This is also why
	// ProcStop doesn't need a sequence number.
	state, ok := o.pStates[curCtx.P]
	if !ok {
		return curCtx, false, fmt.Errorf("event %s for proc (%v) that doesn't exist", o.evName(ev.typ), curCtx.P)
	}
	if state.status != tracev2.ProcRunning && state.status != tracev2.ProcSyscall {
		return curCtx, false, fmt.Errorf("%s event for proc that's not %s or %s", o.evName(ev.typ), tracev2.ProcRunning, tracev2.ProcSyscall)
	}
	reqs := schedReqs{M: mustHave, P: mustHave, G: mayHave}
	if err := validateCtx(curCtx, reqs); err != nil {
		return curCtx, false, err
	}
	state.status = tracev2.ProcIdle
	newCtx := curCtx
	newCtx.P = NoProc
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return newCtx, true, nil
}

func (o *ordering) advanceProcSteal(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	pid := ProcID(ev.args[0])
	seq := makeSeq(gen, ev.args[1])
	state, ok := o.pStates[pid]
	if !ok || (state.status != tracev2.ProcSyscall && state.status != tracev2.ProcSyscallAbandoned) || !seq.succeeds(state.seq) {
		// We can't make an inference as to whether this is bad. We could just be seeing
		// a ProcStart on a different M before the proc's state was emitted, or before we
		// got to the right point in the trace.
		return curCtx, false, nil
	}
	// We can advance this P. Check some invariants.
	reqs := schedReqs{M: mustHave, P: mayHave, G: mayHave}
	if err := validateCtx(curCtx, reqs); err != nil {
		return curCtx, false, err
	}
	// Smuggle in the P state that let us advance so we can surface information to the event.
	// Specifically, we need to make sure that the event is interpreted not as a transition of
	// ProcRunning -> ProcIdle but ProcIdle -> ProcIdle instead.
	//
	// ProcRunning is binding, but we may be running with a P on the current M and we can't
	// bind another P. This P is about to go ProcIdle anyway.
	oldStatus := state.status
	ev.extra(version.Go122)[0] = uint64(oldStatus)

	// Update the P's status and sequence number.
	state.status = tracev2.ProcIdle
	state.seq = seq

	// If we've lost information then don't try to do anything with the M.
	// It may have moved on and we can't be sure.
	if oldStatus == tracev2.ProcSyscallAbandoned {
		o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
		return curCtx, true, nil
	}

	// Validate that the M we're stealing from is what we expect.
	mid := ThreadID(ev.args[2]) // The M we're stealing from.

	newCtx := curCtx
	if mid == curCtx.M {
		// We're stealing from ourselves. This behaves like a ProcStop.
		if curCtx.P != pid {
			return curCtx, false, fmt.Errorf("tried to self-steal proc %d (thread %d), but got proc %d instead", pid, mid, curCtx.P)
		}
		newCtx.P = NoProc
		o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
		return newCtx, true, nil
	}

	// We're stealing from some other M.
	mState, ok := o.mStates[mid]
	if !ok {
		return curCtx, false, fmt.Errorf("stole proc from non-existent thread %d", mid)
	}

	// Make sure we're actually stealing the right P.
	if mState.p != pid {
		return curCtx, false, fmt.Errorf("tried to steal proc %d from thread %d, but got proc %d instead", pid, mid, mState.p)
	}

	// Tell the M it has no P so it can proceed.
	//
	// This is safe because we know the P was in a syscall and
	// the other M must be trying to get out of the syscall.
	// GoSyscallEndBlocked cannot advance until the corresponding
	// M loses its P.
	mState.p = NoProc
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return newCtx, true, nil
}

func (o *ordering) advanceGoStatus(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	gid := GoID(ev.args[0])
	mid := ThreadID(ev.args[1])
	status := tracev2.GoStatus(ev.args[2])

	if int(status) >= len(tracev2GoStatus2GoState) {
		return curCtx, false, fmt.Errorf("invalid status for goroutine %d: %d", gid, status)
	}
	oldState := tracev2GoStatus2GoState[status]
	if s, ok := o.gStates[gid]; ok {
		if s.status != status {
			return curCtx, false, fmt.Errorf("inconsistent status for goroutine %d: old %v vs. new %v", gid, s.status, status)
		}
		s.seq = makeSeq(gen, 0) // Reset seq.
	} else if gen == o.initialGen {
		// Set the state.
		o.gStates[gid] = &gState{id: gid, status: status, seq: makeSeq(gen, 0)}
		oldState = GoUndetermined
	} else {
		return curCtx, false, fmt.Errorf("found goroutine status for new goroutine after the first generation: id=%v status=%v", gid, status)
	}
	ev.args[2] = uint64(oldState)<<32 | uint64(status) // Smuggle in the old state for StateTransition.

	newCtx := curCtx
	switch status {
	case tracev2.GoRunning:
		// Bind the goroutine to the new context, since it's running.
		newCtx.G = gid
	case tracev2.GoSyscall:
		if mid == NoThread {
			return curCtx, false, fmt.Errorf("found goroutine %d in syscall without a thread", gid)
		}
		// Is the syscall on this thread? If so, bind it to the context.
		// Otherwise, we're talking about a G sitting in a syscall on an M.
		// Validate the named M.
		if mid == curCtx.M {
			if gen != o.initialGen && curCtx.G != gid {
				// If this isn't the first generation, we *must* have seen this
				// binding occur already. Even if the G was blocked in a syscall
				// for multiple generations since trace start, we would have seen
				// a previous GoStatus event that bound the goroutine to an M.
				return curCtx, false, fmt.Errorf("inconsistent thread for syscalling goroutine %d: thread has goroutine %d", gid, curCtx.G)
			}
			newCtx.G = gid
			break
		}
		// Now we're talking about a thread and goroutine that have been
		// blocked on a syscall for the entire generation. This case must
		// not have a P; the runtime makes sure that all Ps are traced at
		// the beginning of a generation, which involves taking a P back
		// from every thread.
		ms, ok := o.mStates[mid]
		if ok {
			// This M has been seen. That means we must have seen this
			// goroutine go into a syscall on this thread at some point.
			if ms.g != gid {
				// But the G on the M doesn't match. Something's wrong.
				return curCtx, false, fmt.Errorf("inconsistent thread for syscalling goroutine %d: thread has goroutine %d", gid, ms.g)
			}
			// This case is just a Syscall->Syscall event, which needs to
			// appear as having the G currently bound to this M.
			curCtx.G = ms.g
		} else if !ok {
			// The M hasn't been seen yet. That means this goroutine
			// has just been sitting in a syscall on this M. Create
			// a state for it.
			o.mStates[mid] = &mState{g: gid, p: NoProc}
			// Don't set curCtx.G in this case because this event is the
			// binding event (and curCtx represents the "before" state).
		}
		// Update the current context to the M we're talking about.
		curCtx.M = mid
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return newCtx, true, nil
}

func (o *ordering) advanceGoCreate(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// Goroutines must be created on a running P, but may or may not be created
	// by a running goroutine.
	reqs := schedReqs{M: mustHave, P: mustHave, G: mayHave}
	if err := validateCtx(curCtx, reqs); err != nil {
		return curCtx, false, err
	}
	// If we have a goroutine, it must be running.
	if state, ok := o.gStates[curCtx.G]; ok && state.status != tracev2.GoRunning {
		return curCtx, false, fmt.Errorf("%s event for goroutine that's not %s", o.evName(ev.typ), GoRunning)
	}
	// This goroutine created another. Add a state for it.
	newgid := GoID(ev.args[0])
	if _, ok := o.gStates[newgid]; ok {
		return curCtx, false, fmt.Errorf("tried to create goroutine (%v) that already exists", newgid)
	}
	status := tracev2.GoRunnable
	if ev.typ == tracev2.EvGoCreateBlocked {
		status = tracev2.GoWaiting
	}
	o.gStates[newgid] = &gState{id: newgid, status: status, seq: makeSeq(gen, 0)}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceGoStopExec(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// These are goroutine events that all require an active running
	// goroutine on some thread. They must *always* be advance-able,
	// since running goroutines are bound to their M.
	if err := validateCtx(curCtx, userGoReqs); err != nil {
		return curCtx, false, err
	}
	state, ok := o.gStates[curCtx.G]
	if !ok {
		return curCtx, false, fmt.Errorf("event %s for goroutine (%v) that doesn't exist", o.evName(ev.typ), curCtx.G)
	}
	if state.status != tracev2.GoRunning {
		return curCtx, false, fmt.Errorf("%s event for goroutine that's not %s", o.evName(ev.typ), GoRunning)
	}
	// Handle each case slightly differently; we just group them together
	// because they have shared preconditions.
	newCtx := curCtx
	switch ev.typ {
	case tracev2.EvGoDestroy:
		// This goroutine is exiting itself.
		delete(o.gStates, curCtx.G)
		newCtx.G = NoGoroutine
	case tracev2.EvGoStop:
		// Goroutine stopped (yielded). It's runnable but not running on this M.
		state.status = tracev2.GoRunnable
		newCtx.G = NoGoroutine
	case tracev2.EvGoBlock:
		// Goroutine blocked. It's waiting now and not running on this M.
		state.status = tracev2.GoWaiting
		newCtx.G = NoGoroutine
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return newCtx, true, nil
}

func (o *ordering) advanceGoStart(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	gid := GoID(ev.args[0])
	seq := makeSeq(gen, ev.args[1])
	state, ok := o.gStates[gid]
	if !ok || state.status != tracev2.GoRunnable || !seq.succeeds(state.seq) {
		// We can't make an inference as to whether this is bad. We could just be seeing
		// a GoStart on a different M before the goroutine was created, before it had its
		// state emitted, or before we got to the right point in the trace yet.
		return curCtx, false, nil
	}
	// We can advance this goroutine. Check some invariants.
	reqs := schedReqs{M: mustHave, P: mustHave, G: mustNotHave}
	if err := validateCtx(curCtx, reqs); err != nil {
		return curCtx, false, err
	}
	state.status = tracev2.GoRunning
	state.seq = seq
	newCtx := curCtx
	newCtx.G = gid
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return newCtx, true, nil
}

func (o *ordering) advanceGoUnblock(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// N.B. These both reference the goroutine to unblock, not the current goroutine.
	gid := GoID(ev.args[0])
	seq := makeSeq(gen, ev.args[1])
	state, ok := o.gStates[gid]
	if !ok || state.status != tracev2.GoWaiting || !seq.succeeds(state.seq) {
		// We can't make an inference as to whether this is bad. We could just be seeing
		// a GoUnblock on a different M before the goroutine was created and blocked itself,
		// before it had its state emitted, or before we got to the right point in the trace yet.
		return curCtx, false, nil
	}
	state.status = tracev2.GoRunnable
	state.seq = seq
	// N.B. No context to validate. Basically anything can unblock
	// a goroutine (e.g. sysmon).
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceGoSwitch(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// GoSwitch and GoSwitchDestroy represent a trio of events:
	// - Unblock of the goroutine to switch to.
	// - Block or destroy of the current goroutine.
	// - Start executing the next goroutine.
	//
	// Because it acts like a GoStart for the next goroutine, we can
	// only advance it if the sequence numbers line up.
	//
	// The current goroutine on the thread must be actively running.
	if err := validateCtx(curCtx, userGoReqs); err != nil {
		return curCtx, false, err
	}
	curGState, ok := o.gStates[curCtx.G]
	if !ok {
		return curCtx, false, fmt.Errorf("event %s for goroutine (%v) that doesn't exist", o.evName(ev.typ), curCtx.G)
	}
	if curGState.status != tracev2.GoRunning {
		return curCtx, false, fmt.Errorf("%s event for goroutine that's not %s", o.evName(ev.typ), GoRunning)
	}
	nextg := GoID(ev.args[0])
	seq := makeSeq(gen, ev.args[1]) // seq is for nextg, not curCtx.G.
	nextGState, ok := o.gStates[nextg]
	if !ok || nextGState.status != tracev2.GoWaiting || !seq.succeeds(nextGState.seq) {
		// We can't make an inference as to whether this is bad. We could just be seeing
		// a GoSwitch on a different M before the goroutine was created, before it had its
		// state emitted, or before we got to the right point in the trace yet.
		return curCtx, false, nil
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})

	// Update the state of the executing goroutine and emit an event for it
	// (GoSwitch and GoSwitchDestroy will be interpreted as GoUnblock events
	// for nextg).
	switch ev.typ {
	case tracev2.EvGoSwitch:
		// Goroutine blocked. It's waiting now and not running on this M.
		curGState.status = tracev2.GoWaiting

		// Emit a GoBlock event.
		// TODO(mknyszek): Emit a reason.
		o.queue.push(makeEvent(evt, curCtx, tracev2.EvGoBlock, ev.time, 0 /* no reason */, 0 /* no stack */))
	case tracev2.EvGoSwitchDestroy:
		// This goroutine is exiting itself.
		delete(o.gStates, curCtx.G)

		// Emit a GoDestroy event.
		o.queue.push(makeEvent(evt, curCtx, tracev2.EvGoDestroy, ev.time))
	}
	// Update the state of the next goroutine.
	nextGState.status = tracev2.GoRunning
	nextGState.seq = seq
	newCtx := curCtx
	newCtx.G = nextg

	// Queue an event for the next goroutine starting to run.
	startCtx := curCtx
	startCtx.G = NoGoroutine
	o.queue.push(makeEvent(evt, startCtx, tracev2.EvGoStart, ev.time, uint64(nextg), ev.args[1]))
	return newCtx, true, nil
}

func (o *ordering) advanceGoSyscallBegin(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// Entering a syscall requires an active running goroutine with a
	// proc on some thread. It is always advancable.
	if err := validateCtx(curCtx, userGoReqs); err != nil {
		return curCtx, false, err
	}
	state, ok := o.gStates[curCtx.G]
	if !ok {
		return curCtx, false, fmt.Errorf("event %s for goroutine (%v) that doesn't exist", o.evName(ev.typ), curCtx.G)
	}
	if state.status != tracev2.GoRunning {
		return curCtx, false, fmt.Errorf("%s event for goroutine that's not %s", o.evName(ev.typ), GoRunning)
	}
	// Goroutine entered a syscall. It's still running on this P and M.
	state.status = tracev2.GoSyscall
	pState, ok := o.pStates[curCtx.P]
	if !ok {
		return curCtx, false, fmt.Errorf("uninitialized proc %d found during %s", curCtx.P, o.evName(ev.typ))
	}
	pState.status = tracev2.ProcSyscall
	// Validate the P sequence number on the event and advance it.
	//
	// We have a P sequence number for what is supposed to be a goroutine event
	// so that we can correctly model P stealing. Without this sequence number here,
	// the syscall from which a ProcSteal event is stealing can be ambiguous in the
	// face of broken timestamps. See the go122-syscall-steal-proc-ambiguous test for
	// more details.
	//
	// Note that because this sequence number only exists as a tool for disambiguation,
	// we can enforce that we have the right sequence number at this point; we don't need
	// to back off and see if any other events will advance. This is a running P.
	pSeq := makeSeq(gen, ev.args[0])
	if !pSeq.succeeds(pState.seq) {
		return curCtx, false, fmt.Errorf("failed to advance %s: can't make sequence: %s -> %s", o.evName(ev.typ), pState.seq, pSeq)
	}
	pState.seq = pSeq
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceGoSyscallEnd(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// This event is always advance-able because it happens on the same
	// thread that EvGoSyscallStart happened, and the goroutine can't leave
	// that thread until its done.
	if err := validateCtx(curCtx, userGoReqs); err != nil {
		return curCtx, false, err
	}
	state, ok := o.gStates[curCtx.G]
	if !ok {
		return curCtx, false, fmt.Errorf("event %s for goroutine (%v) that doesn't exist", o.evName(ev.typ), curCtx.G)
	}
	if state.status != tracev2.GoSyscall {
		return curCtx, false, fmt.Errorf("%s event for goroutine that's not %s", o.evName(ev.typ), GoRunning)
	}
	state.status = tracev2.GoRunning

	// Transfer the P back to running from syscall.
	pState, ok := o.pStates[curCtx.P]
	if !ok {
		return curCtx, false, fmt.Errorf("uninitialized proc %d found during %s", curCtx.P, o.evName(ev.typ))
	}
	if pState.status != tracev2.ProcSyscall {
		return curCtx, false, fmt.Errorf("expected proc %d in state %v, but got %v instead", curCtx.P, tracev2.ProcSyscall, pState.status)
	}
	pState.status = tracev2.ProcRunning
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceGoSyscallEndBlocked(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// This event becomes advanceable when its P is not in a syscall state
	// (lack of a P altogether is also acceptable for advancing).
	// The transfer out of ProcSyscall can happen either voluntarily via
	// ProcStop or involuntarily via ProcSteal. We may also acquire a new P
	// before we get here (after the transfer out) but that's OK: that new
	// P won't be in the ProcSyscall state anymore.
	//
	// Basically: while we have a preemptible P, don't advance, because we
	// *know* from the event that we're going to lose it at some point during
	// the syscall. We shouldn't advance until that happens.
	if curCtx.P != NoProc {
		pState, ok := o.pStates[curCtx.P]
		if !ok {
			return curCtx, false, fmt.Errorf("uninitialized proc %d found during %s", curCtx.P, o.evName(ev.typ))
		}
		if pState.status == tracev2.ProcSyscall {
			return curCtx, false, nil
		}
	}
	// As mentioned above, we may have a P here if we ProcStart
	// before this event.
	if err := validateCtx(curCtx, schedReqs{M: mustHave, P: mayHave, G: mustHave}); err != nil {
		return curCtx, false, err
	}
	state, ok := o.gStates[curCtx.G]
	if !ok {
		return curCtx, false, fmt.Errorf("event %s for goroutine (%v) that doesn't exist", o.evName(ev.typ), curCtx.G)
	}
	if state.status != tracev2.GoSyscall {
		return curCtx, false, fmt.Errorf("%s event for goroutine that's not %s", o.evName(ev.typ), GoRunning)
	}
	newCtx := curCtx
	newCtx.G = NoGoroutine
	state.status = tracev2.GoRunnable
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return newCtx, true, nil
}

func (o *ordering) advanceGoCreateSyscall(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// This event indicates that a goroutine is effectively
	// being created out of a cgo callback. Such a goroutine
	// is 'created' in the syscall state.
	if err := validateCtx(curCtx, schedReqs{M: mustHave, P: mayHave, G: mustNotHave}); err != nil {
		return curCtx, false, err
	}
	// This goroutine is effectively being created. Add a state for it.
	newgid := GoID(ev.args[0])
	if _, ok := o.gStates[newgid]; ok {
		return curCtx, false, fmt.Errorf("tried to create goroutine (%v) in syscall that already exists", newgid)
	}
	o.gStates[newgid] = &gState{id: newgid, status: tracev2.GoSyscall, seq: makeSeq(gen, 0)}
	// Goroutine is executing. Bind it to the context.
	newCtx := curCtx
	newCtx.G = newgid
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return newCtx, true, nil
}

func (o *ordering) advanceGoDestroySyscall(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// This event indicates that a goroutine created for a
	// cgo callback is disappearing, either because the callback
	// ending or the C thread that called it is being destroyed.
	//
	// Also, treat this as if we lost our P too.
	// The thread ID may be reused by the platform and we'll get
	// really confused if we try to steal the P is this is running
	// with later. The new M with the same ID could even try to
	// steal back this P from itself!
	//
	// The runtime is careful to make sure that any GoCreateSyscall
	// event will enter the runtime emitting events for reacquiring a P.
	//
	// Note: we might have a P here. The P might not be released
	// eagerly by the runtime, and it might get stolen back later
	// (or never again, if the program is going to exit).
	if err := validateCtx(curCtx, schedReqs{M: mustHave, P: mayHave, G: mustHave}); err != nil {
		return curCtx, false, err
	}
	// Check to make sure the goroutine exists in the right state.
	state, ok := o.gStates[curCtx.G]
	if !ok {
		return curCtx, false, fmt.Errorf("event %s for goroutine (%v) that doesn't exist", o.evName(ev.typ), curCtx.G)
	}
	if state.status != tracev2.GoSyscall {
		return curCtx, false, fmt.Errorf("%s event for goroutine that's not %v", o.evName(ev.typ), GoSyscall)
	}
	// This goroutine is exiting itself.
	delete(o.gStates, curCtx.G)
	newCtx := curCtx
	newCtx.G = NoGoroutine

	// If we have a proc, then we're dissociating from it now. See the comment at the top of the case.
	if curCtx.P != NoProc {
		pState, ok := o.pStates[curCtx.P]
		if !ok {
			return curCtx, false, fmt.Errorf("found invalid proc %d during %s", curCtx.P, o.evName(ev.typ))
		}
		if pState.status != tracev2.ProcSyscall {
			return curCtx, false, fmt.Errorf("proc %d in unexpected state %s during %s", curCtx.P, pState.status, o.evName(ev.typ))
		}
		// See the go122-create-syscall-reuse-thread-id test case for more details.
		pState.status = tracev2.ProcSyscallAbandoned
		newCtx.P = NoProc

		// Queue an extra self-ProcSteal event.
		extra := makeEvent(evt, curCtx, tracev2.EvProcSteal, ev.time, uint64(curCtx.P))
		extra.base.extra(version.Go122)[0] = uint64(tracev2.ProcSyscall)
		o.queue.push(extra)
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return newCtx, true, nil
}

func (o *ordering) advanceUserTaskBegin(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// Handle tasks. Tasks are interesting because:
	// - There's no Begin event required to reference a task.
	// - End for a particular task ID can appear multiple times.
	// As a result, there's very little to validate. The only
	// thing we have to be sure of is that a task didn't begin
	// after it had already begun. Task IDs are allowed to be
	// reused, so we don't care about a Begin after an End.
	id := TaskID(ev.args[0])
	if _, ok := o.activeTasks[id]; ok {
		return curCtx, false, fmt.Errorf("task ID conflict: %d", id)
	}
	// Get the parent ID, but don't validate it. There's no guarantee
	// we actually have information on whether it's active.
	parentID := TaskID(ev.args[1])
	if parentID == BackgroundTask {
		// Note: a value of 0 here actually means no parent, *not* the
		// background task. Automatic background task attachment only
		// applies to regions.
		parentID = NoTask
		ev.args[1] = uint64(NoTask)
	}

	// Validate the name and record it. We'll need to pass it through to
	// EvUserTaskEnd.
	nameID := stringID(ev.args[2])
	name, ok := evt.strings.get(nameID)
	if !ok {
		return curCtx, false, fmt.Errorf("invalid string ID %v for %v event", nameID, ev.typ)
	}
	o.activeTasks[id] = taskState{name: name, parentID: parentID}
	if err := validateCtx(curCtx, userGoReqs); err != nil {
		return curCtx, false, err
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceUserTaskEnd(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	id := TaskID(ev.args[0])
	if ts, ok := o.activeTasks[id]; ok {
		// Smuggle the task info. This may happen in a different generation,
		// which may not have the name in its string table. Add it to the extra
		// strings table so we can look it up later.
		ev.extra(version.Go122)[0] = uint64(ts.parentID)
		ev.extra(version.Go122)[1] = uint64(evt.addExtraString(ts.name))
		delete(o.activeTasks, id)
	} else {
		// Explicitly clear the task info.
		ev.extra(version.Go122)[0] = uint64(NoTask)
		ev.extra(version.Go122)[1] = uint64(evt.addExtraString(""))
	}
	if err := validateCtx(curCtx, userGoReqs); err != nil {
		return curCtx, false, err
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceUserRegionBegin(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	if err := validateCtx(curCtx, userGoReqs); err != nil {
		return curCtx, false, err
	}
	tid := TaskID(ev.args[0])
	nameID := stringID(ev.args[1])
	name, ok := evt.strings.get(nameID)
	if !ok {
		return curCtx, false, fmt.Errorf("invalid string ID %v for %v event", nameID, ev.typ)
	}
	gState, ok := o.gStates[curCtx.G]
	if !ok {
		return curCtx, false, fmt.Errorf("encountered EvUserRegionBegin without known state for current goroutine %d", curCtx.G)
	}
	if err := gState.beginRegion(userRegion{tid, name}); err != nil {
		return curCtx, false, err
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceUserRegionEnd(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	if err := validateCtx(curCtx, userGoReqs); err != nil {
		return curCtx, false, err
	}
	tid := TaskID(ev.args[0])
	nameID := stringID(ev.args[1])
	name, ok := evt.strings.get(nameID)
	if !ok {
		return curCtx, false, fmt.Errorf("invalid string ID %v for %v event", nameID, ev.typ)
	}
	gState, ok := o.gStates[curCtx.G]
	if !ok {
		return curCtx, false, fmt.Errorf("encountered EvUserRegionEnd without known state for current goroutine %d", curCtx.G)
	}
	if err := gState.endRegion(userRegion{tid, name}); err != nil {
		return curCtx, false, err
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

// Handle the GC mark phase.
//
// We have sequence numbers for both start and end because they
// can happen on completely different threads. We want an explicit
// partial order edge between start and end here, otherwise we're
// relying entirely on timestamps to make sure we don't advance a
// GCEnd for a _different_ GC cycle if timestamps are wildly broken.
func (o *ordering) advanceGCActive(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	seq := ev.args[0]
	if gen == o.initialGen {
		if o.gcState != gcUndetermined {
			return curCtx, false, fmt.Errorf("GCActive in the first generation isn't first GC event")
		}
		o.gcSeq = seq
		o.gcState = gcRunning
		o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
		return curCtx, true, nil
	}
	if seq != o.gcSeq+1 {
		// This is not the right GC cycle.
		return curCtx, false, nil
	}
	if o.gcState != gcRunning {
		return curCtx, false, fmt.Errorf("encountered GCActive while GC was not in progress")
	}
	o.gcSeq = seq
	if err := validateCtx(curCtx, userGoReqs); err != nil {
		return curCtx, false, err
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceGCBegin(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	seq := ev.args[0]
	if o.gcState == gcUndetermined {
		o.gcSeq = seq
		o.gcState = gcRunning
		o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
		return curCtx, true, nil
	}
	if seq != o.gcSeq+1 {
		// This is not the right GC cycle.
		return curCtx, false, nil
	}
	if o.gcState == gcRunning {
		return curCtx, false, fmt.Errorf("encountered GCBegin while GC was already in progress")
	}
	o.gcSeq = seq
	o.gcState = gcRunning
	if err := validateCtx(curCtx, userGoReqs); err != nil {
		return curCtx, false, err
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceGCEnd(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	seq := ev.args[0]
	if seq != o.gcSeq+1 {
		// This is not the right GC cycle.
		return curCtx, false, nil
	}
	if o.gcState == gcNotRunning {
		return curCtx, false, fmt.Errorf("encountered GCEnd when GC was not in progress")
	}
	if o.gcState == gcUndetermined {
		return curCtx, false, fmt.Errorf("encountered GCEnd when GC was in an undetermined state")
	}
	o.gcSeq = seq
	o.gcState = gcNotRunning
	if err := validateCtx(curCtx, userGoReqs); err != nil {
		return curCtx, false, err
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceAnnotation(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// Handle simple instantaneous events that require a G.
	if err := validateCtx(curCtx, userGoReqs); err != nil {
		return curCtx, false, err
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceHeapMetric(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// Handle allocation metrics, which don't require a G.
	if err := validateCtx(curCtx, schedReqs{M: mustHave, P: mustHave, G: mayHave}); err != nil {
		return curCtx, false, err
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceGCSweepBegin(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// Handle sweep, which is bound to a P and doesn't require a G.
	if err := validateCtx(curCtx, schedReqs{M: mustHave, P: mustHave, G: mayHave}); err != nil {
		return curCtx, false, err
	}
	if err := o.pStates[curCtx.P].beginRange(makeRangeType(ev.typ, 0)); err != nil {
		return curCtx, false, err
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceGCSweepActive(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	pid := ProcID(ev.args[0])
	// N.B. In practice Ps can't block while they're sweeping, so this can only
	// ever reference curCtx.P. However, be lenient about this like we are with
	// GCMarkAssistActive; there's no reason the runtime couldn't change to block
	// in the middle of a sweep.
	pState, ok := o.pStates[pid]
	if !ok {
		return curCtx, false, fmt.Errorf("encountered GCSweepActive for unknown proc %d", pid)
	}
	if err := pState.activeRange(makeRangeType(ev.typ, 0), gen == o.initialGen); err != nil {
		return curCtx, false, err
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceGCSweepEnd(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	if err := validateCtx(curCtx, schedReqs{M: mustHave, P: mustHave, G: mayHave}); err != nil {
		return curCtx, false, err
	}
	_, err := o.pStates[curCtx.P].endRange(ev.typ)
	if err != nil {
		return curCtx, false, err
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceGoRangeBegin(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// Handle special goroutine-bound event ranges.
	if err := validateCtx(curCtx, userGoReqs); err != nil {
		return curCtx, false, err
	}
	desc := stringID(0)
	if ev.typ == tracev2.EvSTWBegin {
		desc = stringID(ev.args[0])
	}
	gState, ok := o.gStates[curCtx.G]
	if !ok {
		return curCtx, false, fmt.Errorf("encountered event of type %d without known state for current goroutine %d", ev.typ, curCtx.G)
	}
	if err := gState.beginRange(makeRangeType(ev.typ, desc)); err != nil {
		return curCtx, false, err
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceGoRangeActive(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	gid := GoID(ev.args[0])
	// N.B. Like GoStatus, this can happen at any time, because it can
	// reference a non-running goroutine. Don't check anything about the
	// current scheduler context.
	gState, ok := o.gStates[gid]
	if !ok {
		return curCtx, false, fmt.Errorf("uninitialized goroutine %d found during %s", gid, o.evName(ev.typ))
	}
	if err := gState.activeRange(makeRangeType(ev.typ, 0), gen == o.initialGen); err != nil {
		return curCtx, false, err
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceGoRangeEnd(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	if err := validateCtx(curCtx, userGoReqs); err != nil {
		return curCtx, false, err
	}
	gState, ok := o.gStates[curCtx.G]
	if !ok {
		return curCtx, false, fmt.Errorf("encountered event of type %d without known state for current goroutine %d", ev.typ, curCtx.G)
	}
	desc, err := gState.endRange(ev.typ)
	if err != nil {
		return curCtx, false, err
	}
	if ev.typ == tracev2.EvSTWEnd {
		// Smuggle the kind into the event.
		// Don't use ev.extra here so we have symmetry with STWBegin.
		ev.args[0] = uint64(desc)
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

func (o *ordering) advanceAllocFree(ev *baseEvent, evt *evTable, m ThreadID, gen uint64, curCtx schedCtx) (schedCtx, bool, error) {
	// Handle simple instantaneous events that may or may not have a P.
	if err := validateCtx(curCtx, schedReqs{M: mustHave, P: mayHave, G: mayHave}); err != nil {
		return curCtx, false, err
	}
	o.queue.push(Event{table: evt, ctx: curCtx, base: *ev})
	return curCtx, true, nil
}

// Next returns the next event in the ordering.
func (o *ordering) Next() (Event, bool) {
	return o.queue.pop()
}

// schedCtx represents the scheduling resources associated with an event.
type schedCtx struct {
	G GoID
	P ProcID
	M ThreadID
}

// validateCtx ensures that ctx conforms to some reqs, returning an error if
// it doesn't.
func validateCtx(ctx schedCtx, reqs schedReqs) error {
	// Check thread requirements.
	if reqs.M == mustHave && ctx.M == NoThread {
		return fmt.Errorf("expected a thread but didn't have one")
	} else if reqs.M == mustNotHave && ctx.M != NoThread {
		return fmt.Errorf("expected no thread but had one")
	}

	// Check proc requirements.
	if reqs.P == mustHave && ctx.P == NoProc {
		return fmt.Errorf("expected a proc but didn't have one")
	} else if reqs.P == mustNotHave && ctx.P != NoProc {
		return fmt.Errorf("expected no proc but had one")
	}

	// Check goroutine requirements.
	if reqs.G == mustHave && ctx.G == NoGoroutine {
		return fmt.Errorf("expected a goroutine but didn't have one")
	} else if reqs.G == mustNotHave && ctx.G != NoGoroutine {
		return fmt.Errorf("expected no goroutine but had one")
	}
	return nil
}

// gcState is a trinary variable for the current state of the GC.
//
// The third state besides "enabled" and "disabled" is "undetermined."
type gcState uint8

const (
	gcUndetermined gcState = iota
	gcNotRunning
	gcRunning
)

// String returns a human-readable string for the GC state.
func (s gcState) String() string {
	switch s {
	case gcUndetermined:
		return "Undetermined"
	case gcNotRunning:
		return "NotRunning"
	case gcRunning:
		return "Running"
	}
	return "Bad"
}

// userRegion represents a unique user region when attached to some gState.
type userRegion struct {
	// name must be a resolved string because the string ID for the same
	// string may change across generations, but we care about checking
	// the value itself.
	taskID TaskID
	name   string
}

// rangeType is a way to classify special ranges of time.
//
// These typically correspond 1:1 with "Begin" events, but
// they may have an optional subtype that describes the range
// in more detail.
type rangeType struct {
	typ  tracev2.EventType // "Begin" event.
	desc stringID          // Optional subtype.
}

// makeRangeType constructs a new rangeType.
func makeRangeType(typ tracev2.EventType, desc stringID) rangeType {
	if styp := tracev2.Specs()[typ].StartEv; styp != tracev2.EvNone {
		typ = styp
	}
	return rangeType{typ, desc}
}

// gState is the state of a goroutine at a point in the trace.
type gState struct {
	id     GoID
	status tracev2.GoStatus
	seq    seqCounter

	// regions are the active user regions for this goroutine.
	regions []userRegion

	// rangeState is the state of special time ranges bound to this goroutine.
	rangeState
}

// beginRegion starts a user region on the goroutine.
func (s *gState) beginRegion(r userRegion) error {
	s.regions = append(s.regions, r)
	return nil
}

// endRegion ends a user region on the goroutine.
func (s *gState) endRegion(r userRegion) error {
	if len(s.regions) == 0 {
		// We do not know about regions that began before tracing started.
		return nil
	}
	if next := s.regions[len(s.regions)-1]; next != r {
		return fmt.Errorf("misuse of region in goroutine %v: region end %v when the inner-most active region start event is %v", s.id, r, next)
	}
	s.regions = s.regions[:len(s.regions)-1]
	return nil
}

// pState is the state of a proc at a point in the trace.
type pState struct {
	id     ProcID
	status tracev2.ProcStatus
	seq    seqCounter

	// rangeState is the state of special time ranges bound to this proc.
	rangeState
}

// mState is the state of a thread at a point in the trace.
type mState struct {
	g GoID   // Goroutine bound to this M. (The goroutine's state is Executing.)
	p ProcID // Proc bound to this M. (The proc's state is Executing.)
}

// rangeState represents the state of special time ranges.
type rangeState struct {
	// inFlight contains the rangeTypes of any ranges bound to a resource.
	inFlight []rangeType
}

// beginRange begins a special range in time on the goroutine.
//
// Returns an error if the range is already in progress.
func (s *rangeState) beginRange(typ rangeType) error {
	if s.hasRange(typ) {
		return fmt.Errorf("discovered event already in-flight for when starting event %v", tracev2.Specs()[typ.typ].Name)
	}
	s.inFlight = append(s.inFlight, typ)
	return nil
}

// activeRange marks special range in time on the goroutine as active in the
// initial generation, or confirms that it is indeed active in later generations.
func (s *rangeState) activeRange(typ rangeType, isInitialGen bool) error {
	if isInitialGen {
		if s.hasRange(typ) {
			return fmt.Errorf("found named active range already in first gen: %v", typ)
		}
		s.inFlight = append(s.inFlight, typ)
	} else if !s.hasRange(typ) {
		return fmt.Errorf("resource is missing active range: %v %v", tracev2.Specs()[typ.typ].Name, s.inFlight)
	}
	return nil
}

// hasRange returns true if a special time range on the goroutine as in progress.
func (s *rangeState) hasRange(typ rangeType) bool {
	return slices.Contains(s.inFlight, typ)
}

// endRange ends a special range in time on the goroutine.
//
// This must line up with the start event type  of the range the goroutine is currently in.
func (s *rangeState) endRange(typ tracev2.EventType) (stringID, error) {
	st := tracev2.Specs()[typ].StartEv
	idx := -1
	for i, r := range s.inFlight {
		if r.typ == st {
			idx = i
			break
		}
	}
	if idx < 0 {
		return 0, fmt.Errorf("tried to end event %v, but not in-flight", tracev2.Specs()[st].Name)
	}
	// Swap remove.
	desc := s.inFlight[idx].desc
	s.inFlight[idx], s.inFlight[len(s.inFlight)-1] = s.inFlight[len(s.inFlight)-1], s.inFlight[idx]
	s.inFlight = s.inFlight[:len(s.inFlight)-1]
	return desc, nil
}

// seqCounter represents a global sequence counter for a resource.
type seqCounter struct {
	gen uint64 // The generation for the local sequence counter seq.
	seq uint64 // The sequence number local to the generation.
}

// makeSeq creates a new seqCounter.
func makeSeq(gen, seq uint64) seqCounter {
	return seqCounter{gen: gen, seq: seq}
}

// succeeds returns true if a is the immediate successor of b.
func (a seqCounter) succeeds(b seqCounter) bool {
	return a.gen == b.gen && a.seq == b.seq+1
}

// String returns a debug string representation of the seqCounter.
func (c seqCounter) String() string {
	return fmt.Sprintf("%d (gen=%d)", c.seq, c.gen)
}

func dumpOrdering(order *ordering) string {
	var sb strings.Builder
	for id, state := range order.gStates {
		fmt.Fprintf(&sb, "G %d [status=%s seq=%s]\n", id, state.status, state.seq)
	}
	fmt.Fprintln(&sb)
	for id, state := range order.pStates {
		fmt.Fprintf(&sb, "P %d [status=%s seq=%s]\n", id, state.status, state.seq)
	}
	fmt.Fprintln(&sb)
	for id, state := range order.mStates {
		fmt.Fprintf(&sb, "M %d [g=%d p=%d]\n", id, state.g, state.p)
	}
	fmt.Fprintln(&sb)
	fmt.Fprintf(&sb, "GC %d %s\n", order.gcSeq, order.gcState)
	return sb.String()
}

// taskState represents an active task.
type taskState struct {
	// name is the type of the active task.
	name string

	// parentID is the parent ID of the active task.
	parentID TaskID
}

// queue implements a growable ring buffer with a queue API.
type queue[T any] struct {
	start, end int
	buf        []T
}

// push adds a new event to the back of the queue.
func (q *queue[T]) push(value T) {
	if q.end-q.start == len(q.buf) {
		q.grow()
	}
	q.buf[q.end%len(q.buf)] = value
	q.end++
}

// grow increases the size of the queue.
func (q *queue[T]) grow() {
	if len(q.buf) == 0 {
		q.buf = make([]T, 2)
		return
	}

	// Create new buf and copy data over.
	newBuf := make([]T, len(q.buf)*2)
	pivot := q.start % len(q.buf)
	first, last := q.buf[pivot:], q.buf[:pivot]
	copy(newBuf[:len(first)], first)
	copy(newBuf[len(first):], last)

	// Update the queue state.
	q.start = 0
	q.end = len(q.buf)
	q.buf = newBuf
}

// pop removes an event from the front of the queue. If the
// queue is empty, it returns an EventBad event.
func (q *queue[T]) pop() (T, bool) {
	if q.end-q.start == 0 {
		return *new(T), false
	}
	elem := &q.buf[q.start%len(q.buf)]
	value := *elem
	*elem = *new(T) // Clear the entry before returning, so we don't hold onto old tables.
	q.start++
	return value, true
}

// makeEvent creates an Event from the provided information.
//
// It's just a convenience function; it's always OK to construct
// an Event manually if this isn't quite the right way to express
// the contents of the event.
func makeEvent(table *evTable, ctx schedCtx, typ tracev2.EventType, time Time, args ...uint64) Event {
	ev := Event{
		table: table,
		ctx:   ctx,
		base: baseEvent{
			typ:  typ,
			time: time,
		},
	}
	copy(ev.base.args[:], args)
	return ev
}

// schedReqs is a set of constraints on what the scheduling
// context must look like.
type schedReqs struct {
	M constraint
	P constraint
	G constraint
}

// constraint represents a various presence requirements.
type constraint uint8

const (
	mustNotHave constraint = iota
	mayHave
	mustHave
)

// userGoReqs is a common requirement among events that are running
// or are close to running user code.
var userGoReqs = schedReqs{M: mustHave, P: mustHave, G: mustHave}