1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by "gen.bash" from internal/trace; DO NOT EDIT.
//go:build go1.23
package trace
import (
"bufio"
"errors"
"fmt"
"io"
"slices"
"strings"
"golang.org/x/exp/trace/internal/tracev1"
"golang.org/x/exp/trace/internal/tracev2"
"golang.org/x/exp/trace/internal/version"
)
// Reader reads a byte stream, validates it, and produces trace events.
//
// Provided the trace is non-empty the Reader always produces a Sync
// event as the first event, and a Sync event as the last event.
// (There may also be any number of Sync events in the middle, too.)
type Reader struct {
version version.Version
r *bufio.Reader
lastTs Time
gen *generation
frontier []*batchCursor
cpuSamples []cpuSample
order ordering
syncs int
readGenErr error
done bool
// Spill state.
//
// Traces before Go 1.26 had no explicit end-of-generation signal, and
// so the first batch of the next generation needed to be parsed to identify
// a new generation. This batch is the "spilled" so we don't lose track
// of it when parsing the next generation.
//
// This is unnecessary after Go 1.26 because of an explicit end-of-generation
// signal.
spill *spilledBatch
spillErr error // error from reading spill
spillErrSync bool // whether we emitted a Sync before reporting spillErr
v1Events *traceV1Converter
}
// NewReader creates a new trace reader.
func NewReader(r io.Reader) (*Reader, error) {
br := bufio.NewReader(r)
v, err := version.ReadHeader(br)
if err != nil {
return nil, err
}
switch v {
case version.Go111, version.Go119, version.Go121:
tr, err := tracev1.Parse(br, v)
if err != nil {
return nil, err
}
return &Reader{
v1Events: convertV1Trace(tr),
}, nil
case version.Go122, version.Go123, version.Go125, version.Go126:
return &Reader{
version: v,
r: br,
order: ordering{
traceVer: v,
mStates: make(map[ThreadID]*mState),
pStates: make(map[ProcID]*pState),
gStates: make(map[GoID]*gState),
activeTasks: make(map[TaskID]taskState),
},
}, nil
default:
return nil, fmt.Errorf("unknown or unsupported version go 1.%d", v)
}
}
// ReadEvent reads a single event from the stream.
//
// If the stream has been exhausted, it returns an invalid event and io.EOF.
func (r *Reader) ReadEvent() (e Event, err error) {
// Return only io.EOF if we're done.
if r.done {
return Event{}, io.EOF
}
// Handle v1 execution traces.
if r.v1Events != nil {
if r.syncs == 0 {
// Always emit a sync event first, if we have any events at all.
ev, ok := r.v1Events.events.Peek()
if ok {
r.syncs++
return syncEvent(r.v1Events.evt, Time(ev.Ts-1), r.syncs), nil
}
}
ev, err := r.v1Events.next()
if err == io.EOF {
// Always emit a sync event at the end.
r.done = true
r.syncs++
return syncEvent(nil, r.v1Events.lastTs+1, r.syncs), nil
} else if err != nil {
return Event{}, err
}
return ev, nil
}
// Trace v2 parsing algorithm.
//
// (1) Read in all the batches for the next generation from the stream.
// (a) Use the size field in the header to quickly find all batches.
// (2) Parse out the strings, stacks, CPU samples, and timestamp conversion data.
// (3) Group each event batch by M, sorted by timestamp. (batchCursor contains the groups.)
// (4) Organize batchCursors in a min-heap, ordered by the timestamp of the next event for each M.
// (5) Try to advance the next event for the M at the top of the min-heap.
// (a) On success, select that M.
// (b) On failure, sort the min-heap and try to advance other Ms. Select the first M that advances.
// (c) If there's nothing left to advance, goto (1).
// (6) Select the latest event for the selected M and get it ready to be returned.
// (7) Read the next event for the selected M and update the min-heap.
// (8) Return the selected event, goto (5) on the next call.
// Set us up to track the last timestamp and fix up
// the timestamp of any event that comes through.
defer func() {
if err != nil {
return
}
if err = e.validateTableIDs(); err != nil {
return
}
if e.base.time <= r.lastTs {
e.base.time = r.lastTs + 1
}
r.lastTs = e.base.time
}()
// Consume any events in the ordering first.
if ev, ok := r.order.Next(); ok {
return ev, nil
}
// Check if we need to refresh the generation.
if len(r.frontier) == 0 && len(r.cpuSamples) == 0 {
if r.version < version.Go126 {
return r.nextGenWithSpill()
}
if r.readGenErr != nil {
return Event{}, r.readGenErr
}
gen, err := readGeneration(r.r, r.version)
if err != nil {
// Before returning an error, emit the sync event
// for the current generation and queue up the error
// for the next call.
r.readGenErr = err
r.gen = nil
r.syncs++
return syncEvent(nil, r.lastTs, r.syncs), nil
}
return r.installGen(gen)
}
tryAdvance := func(i int) (bool, error) {
bc := r.frontier[i]
if ok, err := r.order.Advance(&bc.ev, r.gen.evTable, bc.m, r.gen.gen); !ok || err != nil {
return ok, err
}
// Refresh the cursor's event.
ok, err := bc.nextEvent(r.gen.batches[bc.m], r.gen.freq)
if err != nil {
return false, err
}
if ok {
// If we successfully refreshed, update the heap.
heapUpdate(r.frontier, i)
} else {
// There's nothing else to read. Delete this cursor from the frontier.
r.frontier = heapRemove(r.frontier, i)
}
return true, nil
}
// Inject a CPU sample if it comes next.
if len(r.cpuSamples) != 0 {
if len(r.frontier) == 0 || r.cpuSamples[0].time < r.frontier[0].ev.time {
e := r.cpuSamples[0].asEvent(r.gen.evTable)
r.cpuSamples = r.cpuSamples[1:]
return e, nil
}
}
// Try to advance the head of the frontier, which should have the minimum timestamp.
// This should be by far the most common case
if len(r.frontier) == 0 {
return Event{}, fmt.Errorf("broken trace: frontier is empty:\n[gen=%d]\n\n%s\n%s\n", r.gen.gen, dumpFrontier(r.frontier), dumpOrdering(&r.order))
}
if ok, err := tryAdvance(0); err != nil {
return Event{}, err
} else if !ok {
// Try to advance the rest of the frontier, in timestamp order.
//
// To do this, sort the min-heap. A sorted min-heap is still a
// min-heap, but now we can iterate over the rest and try to
// advance in order. This path should be rare.
slices.SortFunc(r.frontier, (*batchCursor).compare)
success := false
for i := 1; i < len(r.frontier); i++ {
if ok, err = tryAdvance(i); err != nil {
return Event{}, err
} else if ok {
success = true
break
}
}
if !success {
return Event{}, fmt.Errorf("broken trace: failed to advance: frontier:\n[gen=%d]\n\n%s\n%s\n", r.gen.gen, dumpFrontier(r.frontier), dumpOrdering(&r.order))
}
}
// Pick off the next event on the queue. At this point, one must exist.
ev, ok := r.order.Next()
if !ok {
panic("invariant violation: advance successful, but queue is empty")
}
return ev, nil
}
// nextGenWithSpill reads the generation and calls nextGen while
// also handling any spilled batches.
func (r *Reader) nextGenWithSpill() (Event, error) {
if r.version >= version.Go126 {
return Event{}, errors.New("internal error: nextGenWithSpill called for Go 1.26+ trace")
}
if r.spillErr != nil {
if r.spillErrSync {
return Event{}, r.spillErr
}
r.spillErrSync = true
r.syncs++
return syncEvent(nil, r.lastTs, r.syncs), nil
}
if r.gen != nil && r.spill == nil {
// If we have a generation from the last read,
// and there's nothing left in the frontier, and
// there's no spilled batch, indicating that there's
// no further generation, it means we're done.
// Emit the final sync event.
r.done = true
r.syncs++
return syncEvent(nil, r.lastTs, r.syncs), nil
}
// Read the next generation.
var gen *generation
gen, r.spill, r.spillErr = readGenerationWithSpill(r.r, r.spill, r.version)
if gen == nil {
r.gen = nil
r.spillErrSync = true
r.syncs++
return syncEvent(nil, r.lastTs, r.syncs), nil
}
return r.installGen(gen)
}
// installGen installs the new generation into the Reader and returns
// a Sync event for the new generation.
func (r *Reader) installGen(gen *generation) (Event, error) {
if gen == nil {
// Emit the final sync event.
r.gen = nil
r.done = true
r.syncs++
return syncEvent(nil, r.lastTs, r.syncs), nil
}
r.gen = gen
// Reset CPU samples cursor.
r.cpuSamples = r.gen.cpuSamples
// Reset frontier.
for _, m := range r.gen.batchMs {
batches := r.gen.batches[m]
bc := &batchCursor{m: m}
ok, err := bc.nextEvent(batches, r.gen.freq)
if err != nil {
return Event{}, err
}
if !ok {
// Turns out there aren't actually any events in these batches.
continue
}
r.frontier = heapInsert(r.frontier, bc)
}
r.syncs++
// Always emit a sync event at the beginning of the generation.
return syncEvent(r.gen.evTable, r.gen.freq.mul(r.gen.minTs), r.syncs), nil
}
func dumpFrontier(frontier []*batchCursor) string {
var sb strings.Builder
for _, bc := range frontier {
spec := tracev2.Specs()[bc.ev.typ]
fmt.Fprintf(&sb, "M %d [%s time=%d", bc.m, spec.Name, bc.ev.time)
for i, arg := range spec.Args[1:] {
fmt.Fprintf(&sb, " %s=%d", arg, bc.ev.args[i])
}
fmt.Fprintf(&sb, "]\n")
}
return sb.String()
}
|