1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen.go
// Package ccitt implements a CCITT (fax) image decoder.
package ccitt
import (
"encoding/binary"
"errors"
"image"
"io"
"math/bits"
)
var (
errIncompleteCode = errors.New("ccitt: incomplete code")
errInvalidBounds = errors.New("ccitt: invalid bounds")
errInvalidCode = errors.New("ccitt: invalid code")
errInvalidMode = errors.New("ccitt: invalid mode")
errInvalidOffset = errors.New("ccitt: invalid offset")
errMissingEOL = errors.New("ccitt: missing End-of-Line")
errRunLengthOverflowsWidth = errors.New("ccitt: run length overflows width")
errRunLengthTooLong = errors.New("ccitt: run length too long")
errUnsupportedMode = errors.New("ccitt: unsupported mode")
errUnsupportedSubFormat = errors.New("ccitt: unsupported sub-format")
errUnsupportedWidth = errors.New("ccitt: unsupported width")
)
// Order specifies the bit ordering in a CCITT data stream.
type Order uint32
const (
// LSB means Least Significant Bits first.
LSB Order = iota
// MSB means Most Significant Bits first.
MSB
)
// SubFormat represents that the CCITT format consists of a number of
// sub-formats. Decoding or encoding a CCITT data stream requires knowing the
// sub-format context. It is not represented in the data stream per se.
type SubFormat uint32
const (
Group3 SubFormat = iota
Group4
)
// AutoDetectHeight is passed as the height argument to NewReader to indicate
// that the image height (the number of rows) is not known in advance.
const AutoDetectHeight = -1
// Options are optional parameters.
type Options struct {
// Align means that some variable-bit-width codes are byte-aligned.
Align bool
// Invert means that black is the 1 bit or 0xFF byte, and white is 0.
Invert bool
}
// maxWidth is the maximum (inclusive) supported width. This is a limitation of
// this implementation, to guard against integer overflow, and not anything
// inherent to the CCITT format.
const maxWidth = 1 << 20
func invertBytes(b []byte) {
for i, c := range b {
b[i] = ^c
}
}
func reverseBitsWithinBytes(b []byte) {
for i, c := range b {
b[i] = bits.Reverse8(c)
}
}
// highBits writes to dst (1 bit per pixel, most significant bit first) the
// high (0x80) bits from src (1 byte per pixel). It returns the number of bytes
// written and read such that dst[:d] is the packed form of src[:s].
//
// For example, if src starts with the 8 bytes [0x7D, 0x7E, 0x7F, 0x80, 0x81,
// 0x82, 0x00, 0xFF] then 0x1D will be written to dst[0].
//
// If src has (8 * len(dst)) or more bytes then only len(dst) bytes are
// written, (8 * len(dst)) bytes are read, and invert is ignored.
//
// Otherwise, if len(src) is not a multiple of 8 then the final byte written to
// dst is padded with 1 bits (if invert is true) or 0 bits. If inverted, the 1s
// are typically temporary, e.g. they will be flipped back to 0s by an
// invertBytes call in the highBits caller, reader.Read.
func highBits(dst []byte, src []byte, invert bool) (d int, s int) {
// Pack as many complete groups of 8 src bytes as we can.
n := len(src) / 8
if n > len(dst) {
n = len(dst)
}
dstN := dst[:n]
for i := range dstN {
src8 := src[i*8 : i*8+8]
dstN[i] = ((src8[0] & 0x80) >> 0) |
((src8[1] & 0x80) >> 1) |
((src8[2] & 0x80) >> 2) |
((src8[3] & 0x80) >> 3) |
((src8[4] & 0x80) >> 4) |
((src8[5] & 0x80) >> 5) |
((src8[6] & 0x80) >> 6) |
((src8[7] & 0x80) >> 7)
}
d, s = n, 8*n
dst, src = dst[d:], src[s:]
// Pack up to 7 remaining src bytes, if there's room in dst.
if (len(dst) > 0) && (len(src) > 0) {
dstByte := byte(0)
if invert {
dstByte = 0xFF >> uint(len(src))
}
for n, srcByte := range src {
dstByte |= (srcByte & 0x80) >> uint(n)
}
dst[0] = dstByte
d, s = d+1, s+len(src)
}
return d, s
}
type bitReader struct {
r io.Reader
// readErr is the error returned from the most recent r.Read call. As the
// io.Reader documentation says, when r.Read returns (n, err), "always
// process the n > 0 bytes returned before considering the error err".
readErr error
// order is whether to process r's bytes LSB first or MSB first.
order Order
// The high nBits bits of the bits field hold upcoming bits in MSB order.
bits uint64
nBits uint32
// bytes[br:bw] holds bytes read from r but not yet loaded into bits.
br uint32
bw uint32
bytes [1024]uint8
}
func (b *bitReader) alignToByteBoundary() {
n := b.nBits & 7
b.bits <<= n
b.nBits -= n
}
// nextBitMaxNBits is the maximum possible value of bitReader.nBits after a
// bitReader.nextBit call, provided that bitReader.nBits was not more than this
// value before that call.
//
// Note that the decode function can unread bits, which can temporarily set the
// bitReader.nBits value above nextBitMaxNBits.
const nextBitMaxNBits = 31
func (b *bitReader) nextBit() (uint64, error) {
for {
if b.nBits > 0 {
bit := b.bits >> 63
b.bits <<= 1
b.nBits--
return bit, nil
}
if available := b.bw - b.br; available >= 4 {
// Read 32 bits, even though b.bits is a uint64, since the decode
// function may need to unread up to maxCodeLength bits, putting
// them back in the remaining (64 - 32) bits. TestMaxCodeLength
// checks that the generated maxCodeLength constant fits.
//
// If changing the Uint32 call, also change nextBitMaxNBits.
b.bits = uint64(binary.BigEndian.Uint32(b.bytes[b.br:])) << 32
b.br += 4
b.nBits = 32
continue
} else if available > 0 {
b.bits = uint64(b.bytes[b.br]) << (7 * 8)
b.br++
b.nBits = 8
continue
}
if b.readErr != nil {
return 0, b.readErr
}
n, err := b.r.Read(b.bytes[:])
b.br = 0
b.bw = uint32(n)
b.readErr = err
if b.order != MSB {
reverseBitsWithinBytes(b.bytes[:b.bw])
}
}
}
func decode(b *bitReader, decodeTable [][2]int16) (uint32, error) {
nBitsRead, bitsRead, state := uint32(0), uint64(0), int32(1)
for {
bit, err := b.nextBit()
if err != nil {
if err == io.EOF {
err = errIncompleteCode
}
return 0, err
}
bitsRead |= bit << (63 - nBitsRead)
nBitsRead++
// The "&1" is redundant, but can eliminate a bounds check.
state = int32(decodeTable[state][bit&1])
if state < 0 {
return uint32(^state), nil
} else if state == 0 {
// Unread the bits we've read, then return errInvalidCode.
b.bits = (b.bits >> nBitsRead) | bitsRead
b.nBits += nBitsRead
return 0, errInvalidCode
}
}
}
// decodeEOL decodes the 12-bit EOL code 0000_0000_0001.
func decodeEOL(b *bitReader) error {
nBitsRead, bitsRead := uint32(0), uint64(0)
for {
bit, err := b.nextBit()
if err != nil {
if err == io.EOF {
err = errMissingEOL
}
return err
}
bitsRead |= bit << (63 - nBitsRead)
nBitsRead++
if nBitsRead < 12 {
if bit&1 == 0 {
continue
}
} else if bit&1 != 0 {
return nil
}
// Unread the bits we've read, then return errMissingEOL.
b.bits = (b.bits >> nBitsRead) | bitsRead
b.nBits += nBitsRead
return errMissingEOL
}
}
type reader struct {
br bitReader
subFormat SubFormat
// width is the image width in pixels.
width int
// rowsRemaining starts at the image height in pixels, when the reader is
// driven through the io.Reader interface, and decrements to zero as rows
// are decoded. Alternatively, it may be negative if the image height is
// not known in advance at the time of the NewReader call.
//
// When driven through DecodeIntoGray, this field is unused.
rowsRemaining int
// curr and prev hold the current and previous rows. Each element is either
// 0x00 (black) or 0xFF (white).
//
// prev may be nil, when processing the first row.
curr []byte
prev []byte
// ri is the read index. curr[:ri] are those bytes of curr that have been
// passed along via the Read method.
//
// When the reader is driven through DecodeIntoGray, instead of through the
// io.Reader interface, this field is unused.
ri int
// wi is the write index. curr[:wi] are those bytes of curr that have
// already been decoded via the decodeRow method.
//
// What this implementation calls wi is roughly equivalent to what the spec
// calls the a0 index.
wi int
// These fields are copied from the *Options (which may be nil).
align bool
invert bool
// atStartOfRow is whether we have just started the row. Some parts of the
// spec say to treat this situation as if "wi = -1".
atStartOfRow bool
// penColorIsWhite is whether the next run is black or white.
penColorIsWhite bool
// seenStartOfImage is whether we've called the startDecode method.
seenStartOfImage bool
// truncated is whether the input is missing the final 6 consecutive EOL's
// (for Group3) or 2 consecutive EOL's (for Group4). Omitting that trailer
// (but otherwise padding to a byte boundary, with either all 0 bits or all
// 1 bits) is invalid according to the spec, but happens in practice when
// exporting from Adobe Acrobat to TIFF + CCITT. This package silently
// ignores the format error for CCITT input that has been truncated in that
// fashion, returning the full decoded image.
//
// Detecting trailer truncation (just after the final row of pixels)
// requires knowing which row is the final row, and therefore does not
// trigger if the image height is not known in advance.
truncated bool
// readErr is a sticky error for the Read method.
readErr error
}
func (z *reader) Read(p []byte) (int, error) {
if z.readErr != nil {
return 0, z.readErr
}
originalP := p
for len(p) > 0 {
// Allocate buffers (and decode any start-of-image codes), if
// processing the first or second row.
if z.curr == nil {
if !z.seenStartOfImage {
if z.readErr = z.startDecode(); z.readErr != nil {
break
}
z.atStartOfRow = true
}
z.curr = make([]byte, z.width)
}
// Decode the next row, if necessary.
if z.atStartOfRow {
if z.rowsRemaining < 0 {
// We do not know the image height in advance. See if the next
// code is an EOL. If it is, it is consumed. If it isn't, the
// bitReader shouldn't advance along the bit stream, and we
// simply decode another row of pixel data.
//
// For the Group4 subFormat, we may need to align to a byte
// boundary. For the Group3 subFormat, the previous z.decodeRow
// call (or z.startDecode call) has already consumed one of the
// 6 consecutive EOL's. The next EOL is actually the second of
// 6, in the middle, and we shouldn't align at that point.
if z.align && (z.subFormat == Group4) {
z.br.alignToByteBoundary()
}
if err := z.decodeEOL(); err == errMissingEOL {
// No-op. It's another row of pixel data.
} else if err != nil {
z.readErr = err
break
} else {
if z.readErr = z.finishDecode(true); z.readErr != nil {
break
}
z.readErr = io.EOF
break
}
} else if z.rowsRemaining == 0 {
// We do know the image height in advance, and we have already
// decoded exactly that many rows.
if z.readErr = z.finishDecode(false); z.readErr != nil {
break
}
z.readErr = io.EOF
break
} else {
z.rowsRemaining--
}
if z.readErr = z.decodeRow(z.rowsRemaining == 0); z.readErr != nil {
break
}
}
// Pack from z.curr (1 byte per pixel) to p (1 bit per pixel).
packD, packS := highBits(p, z.curr[z.ri:], z.invert)
p = p[packD:]
z.ri += packS
// Prepare to decode the next row, if necessary.
if z.ri == len(z.curr) {
z.ri, z.curr, z.prev = 0, z.prev, z.curr
z.atStartOfRow = true
}
}
n := len(originalP) - len(p)
if z.invert {
invertBytes(originalP[:n])
}
return n, z.readErr
}
func (z *reader) penColor() byte {
if z.penColorIsWhite {
return 0xFF
}
return 0x00
}
func (z *reader) startDecode() error {
switch z.subFormat {
case Group3:
if err := z.decodeEOL(); err != nil {
return err
}
case Group4:
// No-op.
default:
return errUnsupportedSubFormat
}
z.seenStartOfImage = true
return nil
}
func (z *reader) finishDecode(alreadySeenEOL bool) error {
numberOfEOLs := 0
switch z.subFormat {
case Group3:
if z.truncated {
return nil
}
// The stream ends with a RTC (Return To Control) of 6 consecutive
// EOL's, but we should have already just seen an EOL, either in
// z.startDecode (for a zero-height image) or in z.decodeRow.
numberOfEOLs = 5
case Group4:
autoDetectHeight := z.rowsRemaining < 0
if autoDetectHeight {
// Aligning to a byte boundary was already handled by reader.Read.
} else if z.align {
z.br.alignToByteBoundary()
}
// The stream ends with two EOL's. If the first one is missing, and we
// had an explicit image height, we just assume that the trailing two
// EOL's were truncated and return a nil error.
if err := z.decodeEOL(); err != nil {
if (err == errMissingEOL) && !autoDetectHeight {
z.truncated = true
return nil
}
return err
}
numberOfEOLs = 1
default:
return errUnsupportedSubFormat
}
if alreadySeenEOL {
numberOfEOLs--
}
for ; numberOfEOLs > 0; numberOfEOLs-- {
if err := z.decodeEOL(); err != nil {
return err
}
}
return nil
}
func (z *reader) decodeEOL() error {
return decodeEOL(&z.br)
}
func (z *reader) decodeRow(finalRow bool) error {
z.wi = 0
z.atStartOfRow = true
z.penColorIsWhite = true
if z.align {
z.br.alignToByteBoundary()
}
switch z.subFormat {
case Group3:
for ; z.wi < len(z.curr); z.atStartOfRow = false {
if err := z.decodeRun(); err != nil {
return err
}
}
err := z.decodeEOL()
if finalRow && (err == errMissingEOL) {
z.truncated = true
return nil
}
return err
case Group4:
for ; z.wi < len(z.curr); z.atStartOfRow = false {
mode, err := decode(&z.br, modeDecodeTable[:])
if err != nil {
return err
}
rm := readerMode{}
if mode < uint32(len(readerModes)) {
rm = readerModes[mode]
}
if rm.function == nil {
return errInvalidMode
}
if err := rm.function(z, rm.arg); err != nil {
return err
}
}
return nil
}
return errUnsupportedSubFormat
}
func (z *reader) decodeRun() error {
table := blackDecodeTable[:]
if z.penColorIsWhite {
table = whiteDecodeTable[:]
}
total := 0
for {
n, err := decode(&z.br, table)
if err != nil {
return err
}
if n > maxWidth {
panic("unreachable")
}
total += int(n)
if total > maxWidth {
return errRunLengthTooLong
}
// Anything 0x3F or below is a terminal code.
if n <= 0x3F {
break
}
}
if total > (len(z.curr) - z.wi) {
return errRunLengthOverflowsWidth
}
dst := z.curr[z.wi : z.wi+total]
penColor := z.penColor()
for i := range dst {
dst[i] = penColor
}
z.wi += total
z.penColorIsWhite = !z.penColorIsWhite
return nil
}
// The various modes' semantics are based on determining a row of pixels'
// "changing elements": those pixels whose color differs from the one on its
// immediate left.
//
// The row above the first row is implicitly all white. Similarly, the column
// to the left of the first column is implicitly all white.
//
// For example, here's Figure 1 in "ITU-T Recommendation T.6", where the
// current and previous rows contain black (B) and white (w) pixels. The a?
// indexes point into curr, the b? indexes point into prev.
//
// b1 b2
// v v
// prev: BBBBBwwwwwBBBwwwww
// curr: BBBwwwwwBBBBBBwwww
// ^ ^ ^
// a0 a1 a2
//
// a0 is the "reference element" or current decoder position, roughly
// equivalent to what this implementation calls reader.wi.
//
// a1 is the next changing element to the right of a0, on the "coding line"
// (the current row).
//
// a2 is the next changing element to the right of a1, again on curr.
//
// b1 is the first changing element on the "reference line" (the previous row)
// to the right of a0 and of opposite color to a0.
//
// b2 is the next changing element to the right of b1, again on prev.
//
// The various modes calculate a1 (and a2, for modeH):
// - modePass calculates that a1 is at or to the right of b2.
// - modeH calculates a1 and a2 without considering b1 or b2.
// - modeV* calculates a1 to be b1 plus an adjustment (between -3 and +3).
const (
findB1 = false
findB2 = true
)
// findB finds either the b1 or b2 value.
func (z *reader) findB(whichB bool) int {
// The initial row is a special case. The previous row is implicitly all
// white, so that there are no changing pixel elements. We return b1 or b2
// to be at the end of the row.
if len(z.prev) != len(z.curr) {
return len(z.curr)
}
i := z.wi
if z.atStartOfRow {
// a0 is implicitly at -1, on a white pixel. b1 is the first black
// pixel in the previous row. b2 is the first white pixel after that.
for ; (i < len(z.prev)) && (z.prev[i] == 0xFF); i++ {
}
if whichB == findB2 {
for ; (i < len(z.prev)) && (z.prev[i] == 0x00); i++ {
}
}
return i
}
// As per figure 1 above, assume that the current pen color is white.
// First, walk past every contiguous black pixel in prev, starting at a0.
oppositeColor := ^z.penColor()
for ; (i < len(z.prev)) && (z.prev[i] == oppositeColor); i++ {
}
// Then walk past every contiguous white pixel.
penColor := ^oppositeColor
for ; (i < len(z.prev)) && (z.prev[i] == penColor); i++ {
}
// We're now at a black pixel (or at the end of the row). That's b1.
if whichB == findB2 {
// If we're looking for b2, walk past every contiguous black pixel
// again.
oppositeColor := ^penColor
for ; (i < len(z.prev)) && (z.prev[i] == oppositeColor); i++ {
}
}
return i
}
type readerMode struct {
function func(z *reader, arg int) error
arg int
}
var readerModes = [...]readerMode{
modePass: {function: readerModePass},
modeH: {function: readerModeH},
modeV0: {function: readerModeV, arg: +0},
modeVR1: {function: readerModeV, arg: +1},
modeVR2: {function: readerModeV, arg: +2},
modeVR3: {function: readerModeV, arg: +3},
modeVL1: {function: readerModeV, arg: -1},
modeVL2: {function: readerModeV, arg: -2},
modeVL3: {function: readerModeV, arg: -3},
modeExt: {function: readerModeExt},
}
func readerModePass(z *reader, arg int) error {
b2 := z.findB(findB2)
if (b2 < z.wi) || (len(z.curr) < b2) {
return errInvalidOffset
}
dst := z.curr[z.wi:b2]
penColor := z.penColor()
for i := range dst {
dst[i] = penColor
}
z.wi = b2
return nil
}
func readerModeH(z *reader, arg int) error {
// The first iteration finds a1. The second finds a2.
for i := 0; i < 2; i++ {
if err := z.decodeRun(); err != nil {
return err
}
}
return nil
}
func readerModeV(z *reader, arg int) error {
a1 := z.findB(findB1) + arg
if (a1 < z.wi) || (len(z.curr) < a1) {
return errInvalidOffset
}
dst := z.curr[z.wi:a1]
penColor := z.penColor()
for i := range dst {
dst[i] = penColor
}
z.wi = a1
z.penColorIsWhite = !z.penColorIsWhite
return nil
}
func readerModeExt(z *reader, arg int) error {
return errUnsupportedMode
}
// DecodeIntoGray decodes the CCITT-formatted data in r into dst.
//
// It returns an error if dst's width and height don't match the implied width
// and height of CCITT-formatted data.
func DecodeIntoGray(dst *image.Gray, r io.Reader, order Order, sf SubFormat, opts *Options) error {
bounds := dst.Bounds()
if (bounds.Dx() < 0) || (bounds.Dy() < 0) {
return errInvalidBounds
}
if bounds.Dx() > maxWidth {
return errUnsupportedWidth
}
z := reader{
br: bitReader{r: r, order: order},
subFormat: sf,
align: (opts != nil) && opts.Align,
invert: (opts != nil) && opts.Invert,
width: bounds.Dx(),
}
if err := z.startDecode(); err != nil {
return err
}
width := bounds.Dx()
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
p := (y - bounds.Min.Y) * dst.Stride
z.curr = dst.Pix[p : p+width]
if err := z.decodeRow(y+1 == bounds.Max.Y); err != nil {
return err
}
z.curr, z.prev = nil, z.curr
}
if err := z.finishDecode(false); err != nil {
return err
}
if z.invert {
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
p := (y - bounds.Min.Y) * dst.Stride
invertBytes(dst.Pix[p : p+width])
}
}
return nil
}
// NewReader returns an io.Reader that decodes the CCITT-formatted data in r.
// The resultant byte stream is one bit per pixel (MSB first), with 1 meaning
// white and 0 meaning black. Each row in the result is byte-aligned.
//
// A negative height, such as passing AutoDetectHeight, means that the image
// height is not known in advance. A negative width is invalid.
func NewReader(r io.Reader, order Order, sf SubFormat, width int, height int, opts *Options) io.Reader {
readErr := error(nil)
if width < 0 {
readErr = errInvalidBounds
} else if width > maxWidth {
readErr = errUnsupportedWidth
}
return &reader{
br: bitReader{r: r, order: order},
subFormat: sf,
align: (opts != nil) && opts.Align,
invert: (opts != nil) && opts.Invert,
width: width,
rowsRemaining: height,
readErr: readErr,
}
}
|