1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
|
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vector
import (
"bytes"
"fmt"
"math"
"math/rand"
"runtime"
"testing"
)
// TestDivideByFFFF tests that dividing by 0xffff is equivalent to multiplying
// and then shifting by magic constants. The Go compiler itself issues this
// multiply-and-shift for a division by the constant value 0xffff. This trick
// is used in the asm code as the GOARCH=amd64 SIMD instructions have parallel
// multiply but not parallel divide.
//
// There's undoubtedly a justification somewhere in Hacker's Delight chapter 10
// "Integer Division by Constants", but I don't have a more specific link.
//
// http://www.hackersdelight.org/divcMore.pdf and
// http://www.hackersdelight.org/magic.htm
func TestDivideByFFFF(t *testing.T) {
const mul, shift = 0x80008001, 47
rng := rand.New(rand.NewSource(1))
for i := 0; i < 20000; i++ {
u := rng.Uint32()
got := uint32((uint64(u) * mul) >> shift)
want := u / 0xffff
if got != want {
t.Fatalf("i=%d, u=%#08x: got %#08x, want %#08x", i, u, got, want)
}
}
}
// TestXxxSIMDUnaligned tests that unaligned SIMD loads/stores don't crash.
func TestFixedAccumulateSIMDUnaligned(t *testing.T) {
if !haveAccumulateSIMD {
t.Skip("No SIMD implemention")
}
dst := make([]uint8, 64)
src := make([]uint32, 64)
for d := 0; d < 16; d++ {
for s := 0; s < 16; s++ {
fixedAccumulateOpSrcSIMD(dst[d:d+32], src[s:s+32])
}
}
}
func TestFloatingAccumulateSIMDUnaligned(t *testing.T) {
if !haveAccumulateSIMD {
t.Skip("No SIMD implemention")
}
dst := make([]uint8, 64)
src := make([]float32, 64)
for d := 0; d < 16; d++ {
for s := 0; s < 16; s++ {
floatingAccumulateOpSrcSIMD(dst[d:d+32], src[s:s+32])
}
}
}
// TestXxxSIMDShortDst tests that the SIMD implementations don't write past the
// end of the dst buffer.
func TestFixedAccumulateSIMDShortDst(t *testing.T) {
if !haveAccumulateSIMD {
t.Skip("No SIMD implemention")
}
const oneQuarter = uint32(int2ϕ(fxOne*fxOne)) / 4
src := []uint32{oneQuarter, oneQuarter, oneQuarter, oneQuarter}
for i := 0; i < 4; i++ {
dst := make([]uint8, 4)
fixedAccumulateOpSrcSIMD(dst[:i], src[:i])
for j := range dst {
if j < i {
if got := dst[j]; got == 0 {
t.Errorf("i=%d, j=%d: got %#02x, want non-zero", i, j, got)
}
} else {
if got := dst[j]; got != 0 {
t.Errorf("i=%d, j=%d: got %#02x, want zero", i, j, got)
}
}
}
}
}
func TestFloatingAccumulateSIMDShortDst(t *testing.T) {
if !haveAccumulateSIMD {
t.Skip("No SIMD implemention")
}
const oneQuarter = 0.25
src := []float32{oneQuarter, oneQuarter, oneQuarter, oneQuarter}
for i := 0; i < 4; i++ {
dst := make([]uint8, 4)
floatingAccumulateOpSrcSIMD(dst[:i], src[:i])
for j := range dst {
if j < i {
if got := dst[j]; got == 0 {
t.Errorf("i=%d, j=%d: got %#02x, want non-zero", i, j, got)
}
} else {
if got := dst[j]; got != 0 {
t.Errorf("i=%d, j=%d: got %#02x, want zero", i, j, got)
}
}
}
}
}
func TestFixedAccumulateOpOverShort(t *testing.T) { testAcc(t, fxInShort, fxMaskShort, "over") }
func TestFixedAccumulateOpSrcShort(t *testing.T) { testAcc(t, fxInShort, fxMaskShort, "src") }
func TestFixedAccumulateMaskShort(t *testing.T) { testAcc(t, fxInShort, fxMaskShort, "mask") }
func TestFloatingAccumulateOpOverShort(t *testing.T) { testAcc(t, flInShort, flMaskShort, "over") }
func TestFloatingAccumulateOpSrcShort(t *testing.T) { testAcc(t, flInShort, flMaskShort, "src") }
func TestFloatingAccumulateMaskShort(t *testing.T) { testAcc(t, flInShort, flMaskShort, "mask") }
func TestFixedAccumulateOpOver16(t *testing.T) { testAcc(t, fxIn16, fxMask16, "over") }
func TestFixedAccumulateOpSrc16(t *testing.T) { testAcc(t, fxIn16, fxMask16, "src") }
func TestFixedAccumulateMask16(t *testing.T) { testAcc(t, fxIn16, fxMask16, "mask") }
func TestFloatingAccumulateOpOver16(t *testing.T) { testAcc(t, flIn16, flMask16, "over") }
func TestFloatingAccumulateOpSrc16(t *testing.T) { testAcc(t, flIn16, flMask16, "src") }
func TestFloatingAccumulateMask16(t *testing.T) { testAcc(t, flIn16, flMask16, "mask") }
func testAcc(t *testing.T, in interface{}, mask []uint32, op string) {
for _, simd := range []bool{false, true} {
maxN := 0
switch in := in.(type) {
case []uint32:
if simd && !haveAccumulateSIMD {
continue
}
maxN = len(in)
case []float32:
if simd && !haveAccumulateSIMD {
continue
}
maxN = len(in)
}
for _, n := range []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
33, 55, 79, 96, 120, 165, 256, maxN} {
if n > maxN {
continue
}
var (
got8, want8 []uint8
got32, want32 []uint32
)
switch op {
case "over":
const background = 0x40
got8 = make([]uint8, n)
for i := range got8 {
got8[i] = background
}
want8 = make([]uint8, n)
for i := range want8 {
dstA := uint32(background * 0x101)
maskA := mask[i]
outA := dstA*(0xffff-maskA)/0xffff + maskA
want8[i] = uint8(outA >> 8)
}
case "src":
got8 = make([]uint8, n)
want8 = make([]uint8, n)
for i := range want8 {
want8[i] = uint8(mask[i] >> 8)
}
case "mask":
got32 = make([]uint32, n)
want32 = mask[:n]
}
switch in := in.(type) {
case []uint32:
switch op {
case "over":
if simd {
fixedAccumulateOpOverSIMD(got8, in[:n])
} else {
fixedAccumulateOpOver(got8, in[:n])
}
case "src":
if simd {
fixedAccumulateOpSrcSIMD(got8, in[:n])
} else {
fixedAccumulateOpSrc(got8, in[:n])
}
case "mask":
copy(got32, in[:n])
if simd {
fixedAccumulateMaskSIMD(got32)
} else {
fixedAccumulateMask(got32)
}
}
case []float32:
switch op {
case "over":
if simd {
floatingAccumulateOpOverSIMD(got8, in[:n])
} else {
floatingAccumulateOpOver(got8, in[:n])
}
case "src":
if simd {
floatingAccumulateOpSrcSIMD(got8, in[:n])
} else {
floatingAccumulateOpSrc(got8, in[:n])
}
case "mask":
if simd {
floatingAccumulateMaskSIMD(got32, in[:n])
} else {
floatingAccumulateMask(got32, in[:n])
}
}
}
if op != "mask" {
if !bytes.Equal(got8, want8) {
t.Errorf("simd=%t, n=%d:\ngot: % x\nwant: % x", simd, n, got8, want8)
}
} else {
if !uint32sMatch(got32, want32) {
t.Errorf("simd=%t, n=%d:\ngot: % x\nwant: % x", simd, n, got32, want32)
}
}
}
}
}
// This package contains multiple implementations of the same algorithm, e.g.
// there are both SIMD and non-SIMD (vanilla) implementations on GOARCH=amd64.
// In general, the tests in this file check that the output is *exactly* the
// same, regardless of implementation.
//
// On GOARCH=wasm, float32 arithmetic is done with 64 bit precision. This is
// allowed by the Go specification: only explicit conversions to float32 have
// to round to 32 bit precision. However, the vanilla implementation therefore
// produces different output for GOARCH=wasm than on other GOARCHes.
//
// We therefore treat GOARCH=wasm as a special case, where the tests check that
// the output is only *approximately* the same (within a 0.1% tolerance).
//
// It's not that, on GOARCH=wasm, we produce the "wrong" answer. In fact, the
// computation is more, not less, accurate on GOARCH=wasm. It's that the golden
// output that the tests compare to were, for historical reasons, produced on
// GOARCH=amd64 and so done with less accuracy (where float32 arithmetic is
// performed entirely with 32 bits, not with 64 bits and then rounded back to
// 32 bits). Furthermore, on amd64, we still want to test that SIMD and
// non-SIMD produce exactly the same (albeit less accurate) output. The SIMD
// implementation in particular is limited by what the underlying hardware
// instructions provide, which often favors speed over accuracy.
// approxEquals returns whether got is within 0.1% of want.
func approxEquals(got, want float64) bool {
const tolerance = 0.001
return math.Abs(got-want) <= math.Abs(want)*tolerance
}
// sixteen is used by TestFloat32ArithmeticWithinTolerance, below. It needs to
// be a package-level variable so that the compiler does not replace the
// calculation with a single constant.
var sixteen float32 = 16
// TestFloat32ArithmeticWithinTolerance checks that approxEquals' tolerance is
// sufficiently high so that the results of two separate ways of computing the
// arbitrary fraction 16 / 1122 are deemed "approximately equal" even if they
// aren't "exactly equal".
//
// We're not testing whether the computation on amd64 or wasm is "right" or
// "wrong". We're testing that we cope with them being different.
//
// On GOARCH=amd64, printing x and y gives:
//
// 0.0142602495543672
// 0.014260249212384224
//
// On GOARCH=wasm, printing x and y gives:
//
// 0.0142602495543672
// 0.0142602495543672
//
// The infinitely precise (mathematical) answer is:
//
// 0.014260249554367201426024955436720142602495543672recurring...
//
// See https://play.golang.org/p/RxzKSdD_suE
//
// This test establishes a lower bound on approxEquals' tolerance constant.
// Passing this one test (on all of the various supported GOARCH's) is a
// necessary but not a sufficient condition on that value. Other tests in this
// package that call uint32sMatch or float32sMatch (such as TestMakeFxInXxx,
// TestMakeFlInXxx or anything calling testAcc) also require a sufficiently
// large tolerance. But those tests are more complicated, and if there is a
// problem with the tolerance constant, debugging this test can be simpler.
func TestFloat32ArithmeticWithinTolerance(t *testing.T) {
x := float64(sixteen) / 1122 // Always use 64-bit division.
y := float64(sixteen / 1122) // Use 32- or 64-bit division (GOARCH dependent).
if !approxEquals(x, y) {
t.Errorf("x and y were not approximately equal:\nx = %v\ny = %v", x, y)
}
}
func uint32sMatch(xs, ys []uint32) bool {
if len(xs) != len(ys) {
return false
}
if runtime.GOARCH == "wasm" {
for i := range xs {
if !approxEquals(float64(xs[i]), float64(ys[i])) {
return false
}
}
} else {
for i := range xs {
if xs[i] != ys[i] {
return false
}
}
}
return true
}
func float32sMatch(xs, ys []float32) bool {
if len(xs) != len(ys) {
return false
}
if runtime.GOARCH == "wasm" {
for i := range xs {
if !approxEquals(float64(xs[i]), float64(ys[i])) {
return false
}
}
} else {
for i := range xs {
if xs[i] != ys[i] {
return false
}
}
}
return true
}
func BenchmarkFixedAccumulateOpOver16(b *testing.B) { benchAcc(b, fxIn16, "over", false) }
func BenchmarkFixedAccumulateOpOverSIMD16(b *testing.B) { benchAcc(b, fxIn16, "over", true) }
func BenchmarkFixedAccumulateOpSrc16(b *testing.B) { benchAcc(b, fxIn16, "src", false) }
func BenchmarkFixedAccumulateOpSrcSIMD16(b *testing.B) { benchAcc(b, fxIn16, "src", true) }
func BenchmarkFixedAccumulateMask16(b *testing.B) { benchAcc(b, fxIn16, "mask", false) }
func BenchmarkFixedAccumulateMaskSIMD16(b *testing.B) { benchAcc(b, fxIn16, "mask", true) }
func BenchmarkFloatingAccumulateOpOver16(b *testing.B) { benchAcc(b, flIn16, "over", false) }
func BenchmarkFloatingAccumulateOpOverSIMD16(b *testing.B) { benchAcc(b, flIn16, "over", true) }
func BenchmarkFloatingAccumulateOpSrc16(b *testing.B) { benchAcc(b, flIn16, "src", false) }
func BenchmarkFloatingAccumulateOpSrcSIMD16(b *testing.B) { benchAcc(b, flIn16, "src", true) }
func BenchmarkFloatingAccumulateMask16(b *testing.B) { benchAcc(b, flIn16, "mask", false) }
func BenchmarkFloatingAccumulateMaskSIMD16(b *testing.B) { benchAcc(b, flIn16, "mask", true) }
func BenchmarkFixedAccumulateOpOver64(b *testing.B) { benchAcc(b, fxIn64, "over", false) }
func BenchmarkFixedAccumulateOpOverSIMD64(b *testing.B) { benchAcc(b, fxIn64, "over", true) }
func BenchmarkFixedAccumulateOpSrc64(b *testing.B) { benchAcc(b, fxIn64, "src", false) }
func BenchmarkFixedAccumulateOpSrcSIMD64(b *testing.B) { benchAcc(b, fxIn64, "src", true) }
func BenchmarkFixedAccumulateMask64(b *testing.B) { benchAcc(b, fxIn64, "mask", false) }
func BenchmarkFixedAccumulateMaskSIMD64(b *testing.B) { benchAcc(b, fxIn64, "mask", true) }
func BenchmarkFloatingAccumulateOpOver64(b *testing.B) { benchAcc(b, flIn64, "over", false) }
func BenchmarkFloatingAccumulateOpOverSIMD64(b *testing.B) { benchAcc(b, flIn64, "over", true) }
func BenchmarkFloatingAccumulateOpSrc64(b *testing.B) { benchAcc(b, flIn64, "src", false) }
func BenchmarkFloatingAccumulateOpSrcSIMD64(b *testing.B) { benchAcc(b, flIn64, "src", true) }
func BenchmarkFloatingAccumulateMask64(b *testing.B) { benchAcc(b, flIn64, "mask", false) }
func BenchmarkFloatingAccumulateMaskSIMD64(b *testing.B) { benchAcc(b, flIn64, "mask", true) }
func benchAcc(b *testing.B, in interface{}, op string, simd bool) {
var f func()
switch in := in.(type) {
case []uint32:
if simd && !haveAccumulateSIMD {
b.Skip("No SIMD implemention")
}
switch op {
case "over":
dst := make([]uint8, len(in))
if simd {
f = func() { fixedAccumulateOpOverSIMD(dst, in) }
} else {
f = func() { fixedAccumulateOpOver(dst, in) }
}
case "src":
dst := make([]uint8, len(in))
if simd {
f = func() { fixedAccumulateOpSrcSIMD(dst, in) }
} else {
f = func() { fixedAccumulateOpSrc(dst, in) }
}
case "mask":
buf := make([]uint32, len(in))
copy(buf, in)
if simd {
f = func() { fixedAccumulateMaskSIMD(buf) }
} else {
f = func() { fixedAccumulateMask(buf) }
}
}
case []float32:
if simd && !haveAccumulateSIMD {
b.Skip("No SIMD implemention")
}
switch op {
case "over":
dst := make([]uint8, len(in))
if simd {
f = func() { floatingAccumulateOpOverSIMD(dst, in) }
} else {
f = func() { floatingAccumulateOpOver(dst, in) }
}
case "src":
dst := make([]uint8, len(in))
if simd {
f = func() { floatingAccumulateOpSrcSIMD(dst, in) }
} else {
f = func() { floatingAccumulateOpSrc(dst, in) }
}
case "mask":
dst := make([]uint32, len(in))
if simd {
f = func() { floatingAccumulateMaskSIMD(dst, in) }
} else {
f = func() { floatingAccumulateMask(dst, in) }
}
}
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
f()
}
}
// itou exists because "uint32(int2ϕ(-1))" doesn't compile: constant -1
// overflows uint32.
func itou(i int2ϕ) uint32 {
return uint32(i)
}
var fxInShort = []uint32{
itou(+0x08000), // +0.125, // Running sum: +0.125
itou(-0x20000), // -0.500, // Running sum: -0.375
itou(+0x10000), // +0.250, // Running sum: -0.125
itou(+0x18000), // +0.375, // Running sum: +0.250
itou(+0x08000), // +0.125, // Running sum: +0.375
itou(+0x00000), // +0.000, // Running sum: +0.375
itou(-0x40000), // -1.000, // Running sum: -0.625
itou(-0x20000), // -0.500, // Running sum: -1.125
itou(+0x10000), // +0.250, // Running sum: -0.875
itou(+0x38000), // +0.875, // Running sum: +0.000
itou(+0x10000), // +0.250, // Running sum: +0.250
itou(+0x30000), // +0.750, // Running sum: +1.000
}
var flInShort = []float32{
+0.125, // Running sum: +0.125
-0.500, // Running sum: -0.375
+0.250, // Running sum: -0.125
+0.375, // Running sum: +0.250
+0.125, // Running sum: +0.375
+0.000, // Running sum: +0.375
-1.000, // Running sum: -0.625
-0.500, // Running sum: -1.125
+0.250, // Running sum: -0.875
+0.875, // Running sum: +0.000
+0.250, // Running sum: +0.250
+0.750, // Running sum: +1.000
}
// It's OK for fxMaskShort and flMaskShort to have slightly different values.
// Both the fixed and floating point implementations already have (different)
// rounding errors in the xxxLineTo methods before we get to accumulation. It's
// OK for 50% coverage (in ideal math) to be approximated by either 0x7fff or
// 0x8000. Both slices do contain checks that 0% and 100% map to 0x0000 and
// 0xffff, as does checkCornersCenter in vector_test.go.
//
// It is important, though, for the SIMD and non-SIMD fixed point
// implementations to give the exact same output, and likewise for the floating
// point implementations.
var fxMaskShort = []uint32{
0x2000,
0x6000,
0x2000,
0x4000,
0x6000,
0x6000,
0xa000,
0xffff,
0xe000,
0x0000,
0x4000,
0xffff,
}
var flMaskShort = []uint32{
0x1fff,
0x5fff,
0x1fff,
0x3fff,
0x5fff,
0x5fff,
0x9fff,
0xffff,
0xdfff,
0x0000,
0x3fff,
0xffff,
}
func TestMakeFxInXxx(t *testing.T) {
dump := func(us []uint32) string {
var b bytes.Buffer
for i, u := range us {
if i%8 == 0 {
b.WriteByte('\n')
}
fmt.Fprintf(&b, "%#08x, ", u)
}
return b.String()
}
if !uint32sMatch(fxIn16, hardCodedFxIn16) {
t.Errorf("height 16: got:%v\nwant:%v", dump(fxIn16), dump(hardCodedFxIn16))
}
}
func TestMakeFlInXxx(t *testing.T) {
dump := func(fs []float32) string {
var b bytes.Buffer
for i, f := range fs {
if i%8 == 0 {
b.WriteByte('\n')
}
fmt.Fprintf(&b, "%v, ", f)
}
return b.String()
}
if !float32sMatch(flIn16, hardCodedFlIn16) {
t.Errorf("height 16: got:%v\nwant:%v", dump(flIn16), dump(hardCodedFlIn16))
}
}
func makeInXxx(height int, useFloatingPointMath bool) *Rasterizer {
width, data := scaledBenchmarkGlyphData(height)
z := NewRasterizer(width, height)
z.setUseFloatingPointMath(useFloatingPointMath)
for _, d := range data {
switch d.n {
case 0:
z.MoveTo(d.px, d.py)
case 1:
z.LineTo(d.px, d.py)
case 2:
z.QuadTo(d.px, d.py, d.qx, d.qy)
}
}
return z
}
func makeFxInXxx(height int) []uint32 {
z := makeInXxx(height, false)
return z.bufU32
}
func makeFlInXxx(height int) []float32 {
z := makeInXxx(height, true)
return z.bufF32
}
// fxInXxx and flInXxx are the z.bufU32 and z.bufF32 inputs to the accumulate
// functions when rasterizing benchmarkGlyphData at a height of Xxx pixels.
//
// fxMaskXxx and flMaskXxx are the corresponding golden outputs of those
// accumulateMask functions.
//
// The hardCodedEtc versions are a sanity check for unexpected changes in the
// rasterization implementations up to but not including accumulation.
var (
fxIn16 = makeFxInXxx(16)
fxIn64 = makeFxInXxx(64)
flIn16 = makeFlInXxx(16)
flIn64 = makeFlInXxx(64)
)
var hardCodedFxIn16 = []uint32{
0x00000000, 0x00000000, 0xffffe91d, 0xfffe7c4a, 0xfffeaa9f, 0xffff4e33, 0xffffc1c5, 0x00007782,
0x00009619, 0x0001a857, 0x000129e9, 0x00000028, 0x00000000, 0x00000000, 0xffff6e70, 0xfffd3199,
0xffff5ff8, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00014b29,
0x0002acf3, 0x000007e2, 0xffffca5a, 0xfffcab73, 0xffff8a34, 0x00001b55, 0x0001b334, 0x0001449e,
0x0000434d, 0xffff62ec, 0xfffe1443, 0xffff325d, 0x00000000, 0x0002234a, 0x0001dcb6, 0xfffe2948,
0xfffdd6b8, 0x00000000, 0x00028cc0, 0x00017340, 0x00000000, 0x00000000, 0x00000000, 0xffffd2d6,
0xfffcadd0, 0xffff7f5c, 0x00007400, 0x00038c00, 0xfffe9260, 0xffff2da0, 0x0000023a, 0x0002259b,
0x0000182a, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xfffdc600, 0xfffe3a00, 0x00000059,
0x0003a44d, 0x00005b59, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0xfffe33f3, 0xfffdcc0d, 0x00000000, 0x00033c02, 0x0000c3fe, 0x00000000,
0x00000000, 0xffffa13d, 0xfffeeec8, 0xffff8c02, 0xffff8c48, 0xffffc7b5, 0x00000000, 0xffff5b68,
0xffff3498, 0x00000000, 0x00033c00, 0x0000c400, 0xffff9bc4, 0xfffdf4a3, 0xfffe8df3, 0xffffe1a8,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00033c00,
0x000092c7, 0xfffcf373, 0xffff3dc7, 0x00000fcc, 0x00011ae7, 0x000130c3, 0x0000680d, 0x00004a59,
0x00000a20, 0xfffe9dc4, 0xfffe4a3c, 0x00000000, 0x00033c00, 0xfffe87ef, 0xfffe3c11, 0x0000105e,
0x0002b9c4, 0x000135dc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xfffe3600, 0xfffdca00,
0x00000000, 0x00033c00, 0xfffd9000, 0xffff3400, 0x0000e400, 0x00031c00, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0xfffe3600, 0xfffdca00, 0x00000000, 0x00033c00, 0xfffcf9a5,
0xffffca5b, 0x000120e6, 0x0002df1a, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0xfffdb195, 0xfffe4e6b, 0x00000000, 0x00033c00, 0xfffd9e00, 0xffff2600, 0x00002f0e, 0x00033ea3,
0x0000924d, 0x00000000, 0x00000000, 0x00000000, 0xfffe83b3, 0xfffd881d, 0xfffff431, 0x00000000,
0x00031f60, 0xffff297a, 0xfffdb726, 0x00000000, 0x000053a7, 0x0001b506, 0x0000a24b, 0xffffa32d,
0xfffead9b, 0xffff0479, 0xffffffc9, 0x00000000, 0x00000000, 0x0002d800, 0x0001249d, 0xfffd67bb,
0xfffe9baa, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000ac03, 0x0001448b,
0xfffe0f70, 0x00000000, 0x000229ea, 0x0001d616, 0xffffff8c, 0xfffebf76, 0xfffe54d9, 0xffff5d9e,
0xffffd3eb, 0x0000c65e, 0x0000fc15, 0x0001d491, 0xffffb566, 0xfffd9433, 0x00000000, 0x0000e4ec,
}
var hardCodedFlIn16 = []float32{
0, 0, -0.022306755, -0.3782405, -0.33334962, -0.1741521, -0.0607556, 0.11660573,
0.14664596, 0.41462868, 0.2907673, 0.0001568835, 0, 0, -0.14239307, -0.7012868,
-0.15632017, 0, 0, 0, 0, 0, 0, 0.3230303,
0.6690931, 0.007876594, -0.05189419, -0.832786, -0.11531975, 0.026225802, 0.42518616, 0.3154636,
0.06598757, -0.15304244, -0.47969276, -0.20012794, 0, 0.5327272, 0.46727282, -0.45950258,
-0.5404974, 0, 0.63484025, 0.36515975, 0, 0, 0, -0.04351709,
-0.8293345, -0.12714837, 0.11087036, 0.88912964, -0.35792422, -0.2053554, 0.0022513224, 0.5374398,
0.023588525, 0, 0, 0, 0, -0.55346966, -0.44653034, 0.0002531938,
0.9088273, 0.090919495, 0, 0, 0, 0, 0, 0,
0, 0, -0.44745448, -0.5525455, 0, 0.80748945, 0.19251058, 0,
0, -0.092476256, -0.2661464, -0.11322958, -0.11298219, -0.055094406, 0, -0.16045958,
-0.1996116, 0, 0.80748653, 0.19251347, -0.09804727, -0.51129663, -0.3610403, -0.029615778,
0, 0, 0, 0, 0, 0, 0, 0.80748653,
0.14411622, -0.76251525, -0.1890875, 0.01527351, 0.27528667, 0.29730347, 0.101477206, 0.07259522,
0.009900213, -0.34395567, -0.42788061, 0, 0.80748653, -0.3648737, -0.44261283, 0.015778137,
0.6826565, 0.30156538, 0, 0, 0, 0, -0.44563293, -0.55436707,
0, 0.80748653, -0.60703933, -0.20044717, 0.22371745, 0.77628255, 0, 0,
0, 0, 0, -0.44563293, -0.55436707, 0, 0.80748653, -0.7550391,
-0.05244744, 0.2797074, 0.72029257, 0, 0, 0, 0, 0,
-0.57440215, -0.42559785, 0, 0.80748653, -0.59273535, -0.21475118, 0.04544862, 0.81148535,
0.14306602, 0, 0, 0, -0.369642, -0.61841226, -0.011945802, 0,
0.7791623, -0.20691396, -0.57224834, 0, 0.08218567, 0.42637306, 0.1586175, -0.089709565,
-0.32935485, -0.24788953, -0.00022224105, 0, 0, 0.7085409, 0.28821066, -0.64765793,
-0.34909368, 0, 0, 0, 0, 0, 0.16679136, 0.31914657,
-0.48593786, 0, 0.537915, 0.462085, -0.00041967133, -0.3120329, -0.41914812, -0.15886839,
-0.042683028, 0.19370951, 0.24624406, 0.45803425, -0.07049577, -0.6091341, 0, 0.22253075,
}
var fxMask16 = []uint32{
0x0000, 0x0000, 0x05b8, 0x66a6, 0xbbfe, 0xe871, 0xf800, 0xda20, 0xb499, 0x4a84, 0x0009, 0x0000, 0x0000,
0x0000, 0x2463, 0xd7fd, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xad35, 0x01f8, 0x0000,
0x0d69, 0xe28c, 0xffff, 0xf92a, 0x8c5d, 0x3b36, 0x2a62, 0x51a7, 0xcc97, 0xffff, 0xffff, 0x772d, 0x0000,
0x75ad, 0xffff, 0xffff, 0x5ccf, 0x0000, 0x0000, 0x0000, 0x0000, 0x0b4a, 0xdfd6, 0xffff, 0xe2ff, 0x0000,
0x5b67, 0x8fff, 0x8f70, 0x060a, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x8e7f, 0xffff, 0xffe9, 0x16d6,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x7303, 0xffff, 0xffff, 0x30ff,
0x0000, 0x0000, 0x0000, 0x17b0, 0x5bfe, 0x78fe, 0x95ec, 0xa3fe, 0xa3fe, 0xcd24, 0xfffe, 0xfffe, 0x30fe,
0x0001, 0x190d, 0x9be5, 0xf868, 0xfffe, 0xfffe, 0xfffe, 0xfffe, 0xfffe, 0xfffe, 0xfffe, 0xfffe, 0x30fe,
0x0c4c, 0xcf6f, 0xfffe, 0xfc0b, 0xb551, 0x6920, 0x4f1d, 0x3c87, 0x39ff, 0x928e, 0xffff, 0xffff, 0x30ff,
0x8f03, 0xffff, 0xfbe7, 0x4d76, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x727f, 0xffff, 0xffff, 0x30ff,
0xccff, 0xffff, 0xc6ff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x727f, 0xffff, 0xffff, 0x30ff,
0xf296, 0xffff, 0xb7c6, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x939a, 0xffff, 0xffff, 0x30ff,
0xc97f, 0xffff, 0xf43c, 0x2493, 0x0000, 0x0000, 0x0000, 0x0000, 0x5f13, 0xfd0c, 0xffff, 0xffff, 0x3827,
0x6dc9, 0xffff, 0xffff, 0xeb16, 0x7dd4, 0x5541, 0x6c76, 0xc10f, 0xfff1, 0xffff, 0xffff, 0xffff, 0x49ff,
0x00d8, 0xa6e9, 0xfffe, 0xfffe, 0xfffe, 0xfffe, 0xfffe, 0xfffe, 0xd4fe, 0x83db, 0xffff, 0xffff, 0x7584,
0x0000, 0x001c, 0x503e, 0xbb08, 0xe3a1, 0xeea6, 0xbd0e, 0x7e09, 0x08e5, 0x1b8b, 0xb67f, 0xb67f, 0x7d44,
}
var flMask16 = []uint32{
0x0000, 0x0000, 0x05b5, 0x668a, 0xbbe0, 0xe875, 0xf803, 0xda29, 0xb49f, 0x4a7a, 0x000a, 0x0000, 0x0000,
0x0000, 0x2473, 0xd7fb, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xad4d, 0x0204, 0x0000,
0x0d48, 0xe27a, 0xffff, 0xf949, 0x8c70, 0x3bae, 0x2ac9, 0x51f7, 0xccc4, 0xffff, 0xffff, 0x779f, 0x0000,
0x75a1, 0xffff, 0xffff, 0x5d7b, 0x0000, 0x0000, 0x0000, 0x0000, 0x0b23, 0xdf73, 0xffff, 0xe39d, 0x0000,
0x5ba0, 0x9033, 0x8f9f, 0x0609, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x8db0, 0xffff, 0xffef, 0x1746,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x728c, 0xffff, 0xffff, 0x3148,
0x0000, 0x0000, 0x0000, 0x17ac, 0x5bce, 0x78cb, 0x95b7, 0xa3d2, 0xa3d2, 0xcce6, 0xffff, 0xffff, 0x3148,
0x0000, 0x1919, 0x9bfd, 0xf86b, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x3148,
0x0c63, 0xcf97, 0xffff, 0xfc17, 0xb59d, 0x6981, 0x4f87, 0x3cf1, 0x3a68, 0x9276, 0xffff, 0xffff, 0x3148,
0x8eb0, 0xffff, 0xfbf5, 0x4d33, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x7214, 0xffff, 0xffff, 0x3148,
0xccaf, 0xffff, 0xc6ba, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x7214, 0xffff, 0xffff, 0x3148,
0xf292, 0xffff, 0xb865, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x930c, 0xffff, 0xffff, 0x3148,
0xc906, 0xffff, 0xf45d, 0x249f, 0x0000, 0x0000, 0x0000, 0x0000, 0x5ea0, 0xfcf1, 0xffff, 0xffff, 0x3888,
0x6d81, 0xffff, 0xffff, 0xeaf5, 0x7dcf, 0x5533, 0x6c2b, 0xc07b, 0xfff1, 0xffff, 0xffff, 0xffff, 0x4a9d,
0x00d4, 0xa6a1, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xd54d, 0x8399, 0xffff, 0xffff, 0x764b,
0x0000, 0x001b, 0x4ffc, 0xbb4a, 0xe3f5, 0xeee3, 0xbd4c, 0x7e42, 0x0900, 0x1b0c, 0xb6fc, 0xb6fc, 0x7e04,
}
// TestFixedFloatingCloseness compares the closeness of the fixed point and
// floating point rasterizer.
func TestFixedFloatingCloseness(t *testing.T) {
if len(fxMask16) != len(flMask16) {
t.Fatalf("len(fxMask16) != len(flMask16)")
}
total := uint32(0)
for i := range fxMask16 {
a := fxMask16[i]
b := flMask16[i]
if a > b {
total += a - b
} else {
total += b - a
}
}
n := len(fxMask16)
// This log message is useful when changing the fixed point rasterizer
// implementation, such as by changing ϕ. Assuming that the floating point
// rasterizer is accurate, the average difference is a measure of how
// inaccurate the (faster) fixed point rasterizer is.
//
// Smaller is better.
percent := float64(total*100) / float64(n*65535)
t.Logf("Comparing closeness of the fixed point and floating point rasterizer.\n"+
"Specifically, the elements of fxMask16 and flMask16.\n"+
"Total diff = %d, n = %d, avg = %.5f out of 65535, or %.5f%%.\n",
total, n, float64(total)/float64(n), percent)
const thresholdPercent = 1.0
if percent > thresholdPercent {
t.Errorf("average difference: got %.5f%%, want <= %.5f%%", percent, thresholdPercent)
}
}
|