1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package f32
import "fmt"
// A Mat4 is a 4x4 matrix of float32 values.
// Elements are indexed first by row then column, i.e. m[row][column].
type Mat4 [4]Vec4
func (m Mat4) String() string {
return fmt.Sprintf(`Mat4[% 0.3f, % 0.3f, % 0.3f, % 0.3f,
% 0.3f, % 0.3f, % 0.3f, % 0.3f,
% 0.3f, % 0.3f, % 0.3f, % 0.3f,
% 0.3f, % 0.3f, % 0.3f, % 0.3f]`,
m[0][0], m[0][1], m[0][2], m[0][3],
m[1][0], m[1][1], m[1][2], m[1][3],
m[2][0], m[2][1], m[2][2], m[2][3],
m[3][0], m[3][1], m[3][2], m[3][3])
}
func (m *Mat4) Identity() {
*m = Mat4{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1},
}
}
func (m *Mat4) Eq(n *Mat4, epsilon float32) bool {
for i := range m {
for j := range m[i] {
diff := m[i][j] - n[i][j]
if diff < -epsilon || +epsilon < diff {
return false
}
}
}
return true
}
// Mul stores a × b in m.
func (m *Mat4) Mul(a, b *Mat4) {
// Store the result in local variables, in case m == a || m == b.
m00 := a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0] + a[0][3]*b[3][0]
m01 := a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1] + a[0][3]*b[3][1]
m02 := a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2] + a[0][3]*b[3][2]
m03 := a[0][0]*b[0][3] + a[0][1]*b[1][3] + a[0][2]*b[2][3] + a[0][3]*b[3][3]
m10 := a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0] + a[1][3]*b[3][0]
m11 := a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1] + a[1][3]*b[3][1]
m12 := a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2] + a[1][3]*b[3][2]
m13 := a[1][0]*b[0][3] + a[1][1]*b[1][3] + a[1][2]*b[2][3] + a[1][3]*b[3][3]
m20 := a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0] + a[2][3]*b[3][0]
m21 := a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1] + a[2][3]*b[3][1]
m22 := a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2] + a[2][3]*b[3][2]
m23 := a[2][0]*b[0][3] + a[2][1]*b[1][3] + a[2][2]*b[2][3] + a[2][3]*b[3][3]
m30 := a[3][0]*b[0][0] + a[3][1]*b[1][0] + a[3][2]*b[2][0] + a[3][3]*b[3][0]
m31 := a[3][0]*b[0][1] + a[3][1]*b[1][1] + a[3][2]*b[2][1] + a[3][3]*b[3][1]
m32 := a[3][0]*b[0][2] + a[3][1]*b[1][2] + a[3][2]*b[2][2] + a[3][3]*b[3][2]
m33 := a[3][0]*b[0][3] + a[3][1]*b[1][3] + a[3][2]*b[2][3] + a[3][3]*b[3][3]
m[0][0] = m00
m[0][1] = m01
m[0][2] = m02
m[0][3] = m03
m[1][0] = m10
m[1][1] = m11
m[1][2] = m12
m[1][3] = m13
m[2][0] = m20
m[2][1] = m21
m[2][2] = m22
m[2][3] = m23
m[3][0] = m30
m[3][1] = m31
m[3][2] = m32
m[3][3] = m33
}
// Perspective sets m to be the GL perspective matrix.
func (m *Mat4) Perspective(fov Radian, aspect, near, far float32) {
t := Tan(float32(fov) / 2)
m[0][0] = 1 / (aspect * t)
m[1][1] = 1 / t
m[2][2] = -(far + near) / (far - near)
m[2][3] = -1
m[3][2] = -2 * far * near / (far - near)
}
// Scale sets m to be a scale followed by p.
// It is equivalent to
//
// m.Mul(p, &Mat4{
// {x, 0, 0, 0},
// {0, y, 0, 0},
// {0, 0, z, 0},
// {0, 0, 0, 1},
// }).
func (m *Mat4) Scale(p *Mat4, x, y, z float32) {
m[0][0] = p[0][0] * x
m[0][1] = p[0][1] * y
m[0][2] = p[0][2] * z
m[0][3] = p[0][3]
m[1][0] = p[1][0] * x
m[1][1] = p[1][1] * y
m[1][2] = p[1][2] * z
m[1][3] = p[1][3]
m[2][0] = p[2][0] * x
m[2][1] = p[2][1] * y
m[2][2] = p[2][2] * z
m[2][3] = p[2][3]
m[3][0] = p[3][0] * x
m[3][1] = p[3][1] * y
m[3][2] = p[3][2] * z
m[3][3] = p[3][3]
}
// Translate sets m to be a translation followed by p.
// It is equivalent to
//
// m.Mul(p, &Mat4{
// {1, 0, 0, x},
// {0, 1, 0, y},
// {0, 0, 1, z},
// {0, 0, 0, 1},
// }).
func (m *Mat4) Translate(p *Mat4, x, y, z float32) {
m[0][0] = p[0][0]
m[0][1] = p[0][1]
m[0][2] = p[0][2]
m[0][3] = p[0][0]*x + p[0][1]*y + p[0][2]*z + p[0][3]
m[1][0] = p[1][0]
m[1][1] = p[1][1]
m[1][2] = p[1][2]
m[1][3] = p[1][0]*x + p[1][1]*y + p[1][2]*z + p[1][3]
m[2][0] = p[2][0]
m[2][1] = p[2][1]
m[2][2] = p[2][2]
m[2][3] = p[2][0]*x + p[2][1]*y + p[2][2]*z + p[2][3]
m[3][0] = p[3][0]
m[3][1] = p[3][1]
m[3][2] = p[3][2]
m[3][3] = p[3][0]*x + p[3][1]*y + p[3][2]*z + p[3][3]
}
// Rotate sets m to a rotation in radians around a specified axis, followed by p.
// It is equivalent to m.Mul(p, affineRotation).
func (m *Mat4) Rotate(p *Mat4, angle Radian, axis *Vec3) {
a := *axis
a.Normalize()
c, s := Cos(float32(angle)), Sin(float32(angle))
d := 1 - c
m.Mul(p, &Mat4{{
c + d*a[0]*a[1],
0 + d*a[0]*a[1] + s*a[2],
0 + d*a[0]*a[1] - s*a[1],
0,
}, {
0 + d*a[1]*a[0] - s*a[2],
c + d*a[1]*a[1],
0 + d*a[1]*a[2] + s*a[0],
0,
}, {
0 + d*a[2]*a[0] + s*a[1],
0 + d*a[2]*a[1] - s*a[0],
c + d*a[2]*a[2],
0,
}, {
0, 0, 0, 1,
}})
}
func (m *Mat4) LookAt(eye, center, up *Vec3) {
f, s, u := new(Vec3), new(Vec3), new(Vec3)
*f = *center
f.Sub(f, eye)
f.Normalize()
s.Cross(f, up)
s.Normalize()
u.Cross(s, f)
*m = Mat4{
{s[0], u[0], -f[0], 0},
{s[1], u[1], -f[1], 0},
{s[2], u[2], -f[2], 0},
{-s.Dot(eye), -u.Dot(eye), +f.Dot(eye), 1},
}
}
|