File: instructions.go

package info (click to toggle)
golang-golang-x-net-dev 1%3A0.0%2Bgit20181201.351d144%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster, buster-backports, experimental
  • size: 5,676 kB
  • sloc: makefile: 53; asm: 18
file content (726 lines) | stat: -rw-r--r-- 18,103 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package bpf

import "fmt"

// An Instruction is one instruction executed by the BPF virtual
// machine.
type Instruction interface {
	// Assemble assembles the Instruction into a RawInstruction.
	Assemble() (RawInstruction, error)
}

// A RawInstruction is a raw BPF virtual machine instruction.
type RawInstruction struct {
	// Operation to execute.
	Op uint16
	// For conditional jump instructions, the number of instructions
	// to skip if the condition is true/false.
	Jt uint8
	Jf uint8
	// Constant parameter. The meaning depends on the Op.
	K uint32
}

// Assemble implements the Instruction Assemble method.
func (ri RawInstruction) Assemble() (RawInstruction, error) { return ri, nil }

// Disassemble parses ri into an Instruction and returns it. If ri is
// not recognized by this package, ri itself is returned.
func (ri RawInstruction) Disassemble() Instruction {
	switch ri.Op & opMaskCls {
	case opClsLoadA, opClsLoadX:
		reg := Register(ri.Op & opMaskLoadDest)
		sz := 0
		switch ri.Op & opMaskLoadWidth {
		case opLoadWidth4:
			sz = 4
		case opLoadWidth2:
			sz = 2
		case opLoadWidth1:
			sz = 1
		default:
			return ri
		}
		switch ri.Op & opMaskLoadMode {
		case opAddrModeImmediate:
			if sz != 4 {
				return ri
			}
			return LoadConstant{Dst: reg, Val: ri.K}
		case opAddrModeScratch:
			if sz != 4 || ri.K > 15 {
				return ri
			}
			return LoadScratch{Dst: reg, N: int(ri.K)}
		case opAddrModeAbsolute:
			if ri.K > extOffset+0xffffffff {
				return LoadExtension{Num: Extension(-extOffset + ri.K)}
			}
			return LoadAbsolute{Size: sz, Off: ri.K}
		case opAddrModeIndirect:
			return LoadIndirect{Size: sz, Off: ri.K}
		case opAddrModePacketLen:
			if sz != 4 {
				return ri
			}
			return LoadExtension{Num: ExtLen}
		case opAddrModeMemShift:
			return LoadMemShift{Off: ri.K}
		default:
			return ri
		}

	case opClsStoreA:
		if ri.Op != opClsStoreA || ri.K > 15 {
			return ri
		}
		return StoreScratch{Src: RegA, N: int(ri.K)}

	case opClsStoreX:
		if ri.Op != opClsStoreX || ri.K > 15 {
			return ri
		}
		return StoreScratch{Src: RegX, N: int(ri.K)}

	case opClsALU:
		switch op := ALUOp(ri.Op & opMaskOperator); op {
		case ALUOpAdd, ALUOpSub, ALUOpMul, ALUOpDiv, ALUOpOr, ALUOpAnd, ALUOpShiftLeft, ALUOpShiftRight, ALUOpMod, ALUOpXor:
			switch operand := opOperand(ri.Op & opMaskOperand); operand {
			case opOperandX:
				return ALUOpX{Op: op}
			case opOperandConstant:
				return ALUOpConstant{Op: op, Val: ri.K}
			default:
				return ri
			}
		case aluOpNeg:
			return NegateA{}
		default:
			return ri
		}

	case opClsJump:
		switch op := jumpOp(ri.Op & opMaskOperator); op {
		case opJumpAlways:
			return Jump{Skip: ri.K}
		case opJumpEqual, opJumpGT, opJumpGE, opJumpSet:
			cond, skipTrue, skipFalse := jumpOpToTest(op, ri.Jt, ri.Jf)
			switch operand := opOperand(ri.Op & opMaskOperand); operand {
			case opOperandX:
				return JumpIfX{Cond: cond, SkipTrue: skipTrue, SkipFalse: skipFalse}
			case opOperandConstant:
				return JumpIf{Cond: cond, Val: ri.K, SkipTrue: skipTrue, SkipFalse: skipFalse}
			default:
				return ri
			}
		default:
			return ri
		}

	case opClsReturn:
		switch ri.Op {
		case opClsReturn | opRetSrcA:
			return RetA{}
		case opClsReturn | opRetSrcConstant:
			return RetConstant{Val: ri.K}
		default:
			return ri
		}

	case opClsMisc:
		switch ri.Op {
		case opClsMisc | opMiscTAX:
			return TAX{}
		case opClsMisc | opMiscTXA:
			return TXA{}
		default:
			return ri
		}

	default:
		panic("unreachable") // switch is exhaustive on the bit pattern
	}
}

func jumpOpToTest(op jumpOp, skipTrue uint8, skipFalse uint8) (JumpTest, uint8, uint8) {
	var test JumpTest

	// Decode "fake" jump conditions that don't appear in machine code
	// Ensures the Assemble -> Disassemble stage recreates the same instructions
	// See https://github.com/golang/go/issues/18470
	if skipTrue == 0 {
		switch op {
		case opJumpEqual:
			test = JumpNotEqual
		case opJumpGT:
			test = JumpLessOrEqual
		case opJumpGE:
			test = JumpLessThan
		case opJumpSet:
			test = JumpBitsNotSet
		}

		return test, skipFalse, 0
	}

	switch op {
	case opJumpEqual:
		test = JumpEqual
	case opJumpGT:
		test = JumpGreaterThan
	case opJumpGE:
		test = JumpGreaterOrEqual
	case opJumpSet:
		test = JumpBitsSet
	}

	return test, skipTrue, skipFalse
}

// LoadConstant loads Val into register Dst.
type LoadConstant struct {
	Dst Register
	Val uint32
}

// Assemble implements the Instruction Assemble method.
func (a LoadConstant) Assemble() (RawInstruction, error) {
	return assembleLoad(a.Dst, 4, opAddrModeImmediate, a.Val)
}

// String returns the instruction in assembler notation.
func (a LoadConstant) String() string {
	switch a.Dst {
	case RegA:
		return fmt.Sprintf("ld #%d", a.Val)
	case RegX:
		return fmt.Sprintf("ldx #%d", a.Val)
	default:
		return fmt.Sprintf("unknown instruction: %#v", a)
	}
}

// LoadScratch loads scratch[N] into register Dst.
type LoadScratch struct {
	Dst Register
	N   int // 0-15
}

// Assemble implements the Instruction Assemble method.
func (a LoadScratch) Assemble() (RawInstruction, error) {
	if a.N < 0 || a.N > 15 {
		return RawInstruction{}, fmt.Errorf("invalid scratch slot %d", a.N)
	}
	return assembleLoad(a.Dst, 4, opAddrModeScratch, uint32(a.N))
}

// String returns the instruction in assembler notation.
func (a LoadScratch) String() string {
	switch a.Dst {
	case RegA:
		return fmt.Sprintf("ld M[%d]", a.N)
	case RegX:
		return fmt.Sprintf("ldx M[%d]", a.N)
	default:
		return fmt.Sprintf("unknown instruction: %#v", a)
	}
}

// LoadAbsolute loads packet[Off:Off+Size] as an integer value into
// register A.
type LoadAbsolute struct {
	Off  uint32
	Size int // 1, 2 or 4
}

// Assemble implements the Instruction Assemble method.
func (a LoadAbsolute) Assemble() (RawInstruction, error) {
	return assembleLoad(RegA, a.Size, opAddrModeAbsolute, a.Off)
}

// String returns the instruction in assembler notation.
func (a LoadAbsolute) String() string {
	switch a.Size {
	case 1: // byte
		return fmt.Sprintf("ldb [%d]", a.Off)
	case 2: // half word
		return fmt.Sprintf("ldh [%d]", a.Off)
	case 4: // word
		if a.Off > extOffset+0xffffffff {
			return LoadExtension{Num: Extension(a.Off + 0x1000)}.String()
		}
		return fmt.Sprintf("ld [%d]", a.Off)
	default:
		return fmt.Sprintf("unknown instruction: %#v", a)
	}
}

// LoadIndirect loads packet[X+Off:X+Off+Size] as an integer value
// into register A.
type LoadIndirect struct {
	Off  uint32
	Size int // 1, 2 or 4
}

// Assemble implements the Instruction Assemble method.
func (a LoadIndirect) Assemble() (RawInstruction, error) {
	return assembleLoad(RegA, a.Size, opAddrModeIndirect, a.Off)
}

// String returns the instruction in assembler notation.
func (a LoadIndirect) String() string {
	switch a.Size {
	case 1: // byte
		return fmt.Sprintf("ldb [x + %d]", a.Off)
	case 2: // half word
		return fmt.Sprintf("ldh [x + %d]", a.Off)
	case 4: // word
		return fmt.Sprintf("ld [x + %d]", a.Off)
	default:
		return fmt.Sprintf("unknown instruction: %#v", a)
	}
}

// LoadMemShift multiplies the first 4 bits of the byte at packet[Off]
// by 4 and stores the result in register X.
//
// This instruction is mainly useful to load into X the length of an
// IPv4 packet header in a single instruction, rather than have to do
// the arithmetic on the header's first byte by hand.
type LoadMemShift struct {
	Off uint32
}

// Assemble implements the Instruction Assemble method.
func (a LoadMemShift) Assemble() (RawInstruction, error) {
	return assembleLoad(RegX, 1, opAddrModeMemShift, a.Off)
}

// String returns the instruction in assembler notation.
func (a LoadMemShift) String() string {
	return fmt.Sprintf("ldx 4*([%d]&0xf)", a.Off)
}

// LoadExtension invokes a linux-specific extension and stores the
// result in register A.
type LoadExtension struct {
	Num Extension
}

// Assemble implements the Instruction Assemble method.
func (a LoadExtension) Assemble() (RawInstruction, error) {
	if a.Num == ExtLen {
		return assembleLoad(RegA, 4, opAddrModePacketLen, 0)
	}
	return assembleLoad(RegA, 4, opAddrModeAbsolute, uint32(extOffset+a.Num))
}

// String returns the instruction in assembler notation.
func (a LoadExtension) String() string {
	switch a.Num {
	case ExtLen:
		return "ld #len"
	case ExtProto:
		return "ld #proto"
	case ExtType:
		return "ld #type"
	case ExtPayloadOffset:
		return "ld #poff"
	case ExtInterfaceIndex:
		return "ld #ifidx"
	case ExtNetlinkAttr:
		return "ld #nla"
	case ExtNetlinkAttrNested:
		return "ld #nlan"
	case ExtMark:
		return "ld #mark"
	case ExtQueue:
		return "ld #queue"
	case ExtLinkLayerType:
		return "ld #hatype"
	case ExtRXHash:
		return "ld #rxhash"
	case ExtCPUID:
		return "ld #cpu"
	case ExtVLANTag:
		return "ld #vlan_tci"
	case ExtVLANTagPresent:
		return "ld #vlan_avail"
	case ExtVLANProto:
		return "ld #vlan_tpid"
	case ExtRand:
		return "ld #rand"
	default:
		return fmt.Sprintf("unknown instruction: %#v", a)
	}
}

// StoreScratch stores register Src into scratch[N].
type StoreScratch struct {
	Src Register
	N   int // 0-15
}

// Assemble implements the Instruction Assemble method.
func (a StoreScratch) Assemble() (RawInstruction, error) {
	if a.N < 0 || a.N > 15 {
		return RawInstruction{}, fmt.Errorf("invalid scratch slot %d", a.N)
	}
	var op uint16
	switch a.Src {
	case RegA:
		op = opClsStoreA
	case RegX:
		op = opClsStoreX
	default:
		return RawInstruction{}, fmt.Errorf("invalid source register %v", a.Src)
	}

	return RawInstruction{
		Op: op,
		K:  uint32(a.N),
	}, nil
}

// String returns the instruction in assembler notation.
func (a StoreScratch) String() string {
	switch a.Src {
	case RegA:
		return fmt.Sprintf("st M[%d]", a.N)
	case RegX:
		return fmt.Sprintf("stx M[%d]", a.N)
	default:
		return fmt.Sprintf("unknown instruction: %#v", a)
	}
}

// ALUOpConstant executes A = A <Op> Val.
type ALUOpConstant struct {
	Op  ALUOp
	Val uint32
}

// Assemble implements the Instruction Assemble method.
func (a ALUOpConstant) Assemble() (RawInstruction, error) {
	return RawInstruction{
		Op: opClsALU | uint16(opOperandConstant) | uint16(a.Op),
		K:  a.Val,
	}, nil
}

// String returns the instruction in assembler notation.
func (a ALUOpConstant) String() string {
	switch a.Op {
	case ALUOpAdd:
		return fmt.Sprintf("add #%d", a.Val)
	case ALUOpSub:
		return fmt.Sprintf("sub #%d", a.Val)
	case ALUOpMul:
		return fmt.Sprintf("mul #%d", a.Val)
	case ALUOpDiv:
		return fmt.Sprintf("div #%d", a.Val)
	case ALUOpMod:
		return fmt.Sprintf("mod #%d", a.Val)
	case ALUOpAnd:
		return fmt.Sprintf("and #%d", a.Val)
	case ALUOpOr:
		return fmt.Sprintf("or #%d", a.Val)
	case ALUOpXor:
		return fmt.Sprintf("xor #%d", a.Val)
	case ALUOpShiftLeft:
		return fmt.Sprintf("lsh #%d", a.Val)
	case ALUOpShiftRight:
		return fmt.Sprintf("rsh #%d", a.Val)
	default:
		return fmt.Sprintf("unknown instruction: %#v", a)
	}
}

// ALUOpX executes A = A <Op> X
type ALUOpX struct {
	Op ALUOp
}

// Assemble implements the Instruction Assemble method.
func (a ALUOpX) Assemble() (RawInstruction, error) {
	return RawInstruction{
		Op: opClsALU | uint16(opOperandX) | uint16(a.Op),
	}, nil
}

// String returns the instruction in assembler notation.
func (a ALUOpX) String() string {
	switch a.Op {
	case ALUOpAdd:
		return "add x"
	case ALUOpSub:
		return "sub x"
	case ALUOpMul:
		return "mul x"
	case ALUOpDiv:
		return "div x"
	case ALUOpMod:
		return "mod x"
	case ALUOpAnd:
		return "and x"
	case ALUOpOr:
		return "or x"
	case ALUOpXor:
		return "xor x"
	case ALUOpShiftLeft:
		return "lsh x"
	case ALUOpShiftRight:
		return "rsh x"
	default:
		return fmt.Sprintf("unknown instruction: %#v", a)
	}
}

// NegateA executes A = -A.
type NegateA struct{}

// Assemble implements the Instruction Assemble method.
func (a NegateA) Assemble() (RawInstruction, error) {
	return RawInstruction{
		Op: opClsALU | uint16(aluOpNeg),
	}, nil
}

// String returns the instruction in assembler notation.
func (a NegateA) String() string {
	return fmt.Sprintf("neg")
}

// Jump skips the following Skip instructions in the program.
type Jump struct {
	Skip uint32
}

// Assemble implements the Instruction Assemble method.
func (a Jump) Assemble() (RawInstruction, error) {
	return RawInstruction{
		Op: opClsJump | uint16(opJumpAlways),
		K:  a.Skip,
	}, nil
}

// String returns the instruction in assembler notation.
func (a Jump) String() string {
	return fmt.Sprintf("ja %d", a.Skip)
}

// JumpIf skips the following Skip instructions in the program if A
// <Cond> Val is true.
type JumpIf struct {
	Cond      JumpTest
	Val       uint32
	SkipTrue  uint8
	SkipFalse uint8
}

// Assemble implements the Instruction Assemble method.
func (a JumpIf) Assemble() (RawInstruction, error) {
	return jumpToRaw(a.Cond, opOperandConstant, a.Val, a.SkipTrue, a.SkipFalse)
}

// String returns the instruction in assembler notation.
func (a JumpIf) String() string {
	return jumpToString(a.Cond, fmt.Sprintf("#%d", a.Val), a.SkipTrue, a.SkipFalse)
}

// JumpIfX skips the following Skip instructions in the program if A
// <Cond> X is true.
type JumpIfX struct {
	Cond      JumpTest
	SkipTrue  uint8
	SkipFalse uint8
}

// Assemble implements the Instruction Assemble method.
func (a JumpIfX) Assemble() (RawInstruction, error) {
	return jumpToRaw(a.Cond, opOperandX, 0, a.SkipTrue, a.SkipFalse)
}

// String returns the instruction in assembler notation.
func (a JumpIfX) String() string {
	return jumpToString(a.Cond, "x", a.SkipTrue, a.SkipFalse)
}

// jumpToRaw assembles a jump instruction into a RawInstruction
func jumpToRaw(test JumpTest, operand opOperand, k uint32, skipTrue, skipFalse uint8) (RawInstruction, error) {
	var (
		cond jumpOp
		flip bool
	)
	switch test {
	case JumpEqual:
		cond = opJumpEqual
	case JumpNotEqual:
		cond, flip = opJumpEqual, true
	case JumpGreaterThan:
		cond = opJumpGT
	case JumpLessThan:
		cond, flip = opJumpGE, true
	case JumpGreaterOrEqual:
		cond = opJumpGE
	case JumpLessOrEqual:
		cond, flip = opJumpGT, true
	case JumpBitsSet:
		cond = opJumpSet
	case JumpBitsNotSet:
		cond, flip = opJumpSet, true
	default:
		return RawInstruction{}, fmt.Errorf("unknown JumpTest %v", test)
	}
	jt, jf := skipTrue, skipFalse
	if flip {
		jt, jf = jf, jt
	}
	return RawInstruction{
		Op: opClsJump | uint16(cond) | uint16(operand),
		Jt: jt,
		Jf: jf,
		K:  k,
	}, nil
}

// jumpToString converts a jump instruction to assembler notation
func jumpToString(cond JumpTest, operand string, skipTrue, skipFalse uint8) string {
	switch cond {
	// K == A
	case JumpEqual:
		return conditionalJump(operand, skipTrue, skipFalse, "jeq", "jneq")
	// K != A
	case JumpNotEqual:
		return fmt.Sprintf("jneq %s,%d", operand, skipTrue)
	// K > A
	case JumpGreaterThan:
		return conditionalJump(operand, skipTrue, skipFalse, "jgt", "jle")
	// K < A
	case JumpLessThan:
		return fmt.Sprintf("jlt %s,%d", operand, skipTrue)
	// K >= A
	case JumpGreaterOrEqual:
		return conditionalJump(operand, skipTrue, skipFalse, "jge", "jlt")
	// K <= A
	case JumpLessOrEqual:
		return fmt.Sprintf("jle %s,%d", operand, skipTrue)
	// K & A != 0
	case JumpBitsSet:
		if skipFalse > 0 {
			return fmt.Sprintf("jset %s,%d,%d", operand, skipTrue, skipFalse)
		}
		return fmt.Sprintf("jset %s,%d", operand, skipTrue)
	// K & A == 0, there is no assembler instruction for JumpBitNotSet, use JumpBitSet and invert skips
	case JumpBitsNotSet:
		return jumpToString(JumpBitsSet, operand, skipFalse, skipTrue)
	default:
		return fmt.Sprintf("unknown JumpTest %#v", cond)
	}
}

func conditionalJump(operand string, skipTrue, skipFalse uint8, positiveJump, negativeJump string) string {
	if skipTrue > 0 {
		if skipFalse > 0 {
			return fmt.Sprintf("%s %s,%d,%d", positiveJump, operand, skipTrue, skipFalse)
		}
		return fmt.Sprintf("%s %s,%d", positiveJump, operand, skipTrue)
	}
	return fmt.Sprintf("%s %s,%d", negativeJump, operand, skipFalse)
}

// RetA exits the BPF program, returning the value of register A.
type RetA struct{}

// Assemble implements the Instruction Assemble method.
func (a RetA) Assemble() (RawInstruction, error) {
	return RawInstruction{
		Op: opClsReturn | opRetSrcA,
	}, nil
}

// String returns the instruction in assembler notation.
func (a RetA) String() string {
	return fmt.Sprintf("ret a")
}

// RetConstant exits the BPF program, returning a constant value.
type RetConstant struct {
	Val uint32
}

// Assemble implements the Instruction Assemble method.
func (a RetConstant) Assemble() (RawInstruction, error) {
	return RawInstruction{
		Op: opClsReturn | opRetSrcConstant,
		K:  a.Val,
	}, nil
}

// String returns the instruction in assembler notation.
func (a RetConstant) String() string {
	return fmt.Sprintf("ret #%d", a.Val)
}

// TXA copies the value of register X to register A.
type TXA struct{}

// Assemble implements the Instruction Assemble method.
func (a TXA) Assemble() (RawInstruction, error) {
	return RawInstruction{
		Op: opClsMisc | opMiscTXA,
	}, nil
}

// String returns the instruction in assembler notation.
func (a TXA) String() string {
	return fmt.Sprintf("txa")
}

// TAX copies the value of register A to register X.
type TAX struct{}

// Assemble implements the Instruction Assemble method.
func (a TAX) Assemble() (RawInstruction, error) {
	return RawInstruction{
		Op: opClsMisc | opMiscTAX,
	}, nil
}

// String returns the instruction in assembler notation.
func (a TAX) String() string {
	return fmt.Sprintf("tax")
}

func assembleLoad(dst Register, loadSize int, mode uint16, k uint32) (RawInstruction, error) {
	var (
		cls uint16
		sz  uint16
	)
	switch dst {
	case RegA:
		cls = opClsLoadA
	case RegX:
		cls = opClsLoadX
	default:
		return RawInstruction{}, fmt.Errorf("invalid target register %v", dst)
	}
	switch loadSize {
	case 1:
		sz = opLoadWidth1
	case 2:
		sz = opLoadWidth2
	case 4:
		sz = opLoadWidth4
	default:
		return RawInstruction{}, fmt.Errorf("invalid load byte length %d", sz)
	}
	return RawInstruction{
		Op: cls | sz | mode,
		K:  k,
	}, nil
}