1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.21
package quic
import (
"crypto/tls"
"errors"
"time"
)
// maybeSend sends datagrams, if possible.
//
// If sending is blocked by pacing, it returns the next time
// a datagram may be sent.
//
// If sending is blocked indefinitely, it returns the zero Time.
func (c *Conn) maybeSend(now time.Time) (next time.Time) {
// Assumption: The congestion window is not underutilized.
// If congestion control, pacing, and anti-amplification all permit sending,
// but we have no packet to send, then we will declare the window underutilized.
underutilized := false
defer func() {
c.loss.cc.setUnderutilized(c.log, underutilized)
}()
// Send one datagram on each iteration of this loop,
// until we hit a limit or run out of data to send.
//
// For each number space where we have write keys,
// attempt to construct a packet in that space.
// If the packet contains no frames (we have no data in need of sending),
// abandon the packet.
//
// Speculatively constructing packets means we don't need
// separate code paths for "do we have data to send?" and
// "send the data" that need to be kept in sync.
for {
limit, next := c.loss.sendLimit(now)
if limit == ccBlocked {
// If anti-amplification blocks sending, then no packet can be sent.
return next
}
if !c.sendOK(now) {
return time.Time{}
}
// We may still send ACKs, even if congestion control or pacing limit sending.
// Prepare to write a datagram of at most maxSendSize bytes.
c.w.reset(c.loss.maxSendSize())
dstConnID, ok := c.connIDState.dstConnID()
if !ok {
// It is currently not possible for us to end up without a connection ID,
// but handle the case anyway.
return time.Time{}
}
// Initial packet.
pad := false
var sentInitial *sentPacket
if c.keysInitial.canWrite() {
pnumMaxAcked := c.loss.spaces[initialSpace].maxAcked
pnum := c.loss.nextNumber(initialSpace)
p := longPacket{
ptype: packetTypeInitial,
version: quicVersion1,
num: pnum,
dstConnID: dstConnID,
srcConnID: c.connIDState.srcConnID(),
extra: c.retryToken,
}
c.w.startProtectedLongHeaderPacket(pnumMaxAcked, p)
c.appendFrames(now, initialSpace, pnum, limit)
if logPackets {
logSentPacket(c, packetTypeInitial, pnum, p.srcConnID, p.dstConnID, c.w.payload())
}
if c.logEnabled(QLogLevelPacket) && len(c.w.payload()) > 0 {
c.logPacketSent(packetTypeInitial, pnum, p.srcConnID, p.dstConnID, c.w.packetLen(), c.w.payload())
}
sentInitial = c.w.finishProtectedLongHeaderPacket(pnumMaxAcked, c.keysInitial.w, p)
if sentInitial != nil {
// Client initial packets and ack-eliciting server initial packaets
// need to be sent in a datagram padded to at least 1200 bytes.
// We can't add the padding yet, however, since we may want to
// coalesce additional packets with this one.
if c.side == clientSide || sentInitial.ackEliciting {
pad = true
}
}
}
// Handshake packet.
if c.keysHandshake.canWrite() {
pnumMaxAcked := c.loss.spaces[handshakeSpace].maxAcked
pnum := c.loss.nextNumber(handshakeSpace)
p := longPacket{
ptype: packetTypeHandshake,
version: quicVersion1,
num: pnum,
dstConnID: dstConnID,
srcConnID: c.connIDState.srcConnID(),
}
c.w.startProtectedLongHeaderPacket(pnumMaxAcked, p)
c.appendFrames(now, handshakeSpace, pnum, limit)
if logPackets {
logSentPacket(c, packetTypeHandshake, pnum, p.srcConnID, p.dstConnID, c.w.payload())
}
if c.logEnabled(QLogLevelPacket) && len(c.w.payload()) > 0 {
c.logPacketSent(packetTypeHandshake, pnum, p.srcConnID, p.dstConnID, c.w.packetLen(), c.w.payload())
}
if sent := c.w.finishProtectedLongHeaderPacket(pnumMaxAcked, c.keysHandshake.w, p); sent != nil {
c.packetSent(now, handshakeSpace, sent)
if c.side == clientSide {
// "[...] a client MUST discard Initial keys when it first
// sends a Handshake packet [...]"
// https://www.rfc-editor.org/rfc/rfc9001.html#section-4.9.1-2
c.discardKeys(now, initialSpace)
}
}
}
// 1-RTT packet.
if c.keysAppData.canWrite() {
pnumMaxAcked := c.loss.spaces[appDataSpace].maxAcked
pnum := c.loss.nextNumber(appDataSpace)
c.w.start1RTTPacket(pnum, pnumMaxAcked, dstConnID)
c.appendFrames(now, appDataSpace, pnum, limit)
if pad && len(c.w.payload()) > 0 {
// 1-RTT packets have no length field and extend to the end
// of the datagram, so if we're sending a datagram that needs
// padding we need to add it inside the 1-RTT packet.
c.w.appendPaddingTo(paddedInitialDatagramSize)
pad = false
}
if logPackets {
logSentPacket(c, packetType1RTT, pnum, nil, dstConnID, c.w.payload())
}
if c.logEnabled(QLogLevelPacket) && len(c.w.payload()) > 0 {
c.logPacketSent(packetType1RTT, pnum, nil, dstConnID, c.w.packetLen(), c.w.payload())
}
if sent := c.w.finish1RTTPacket(pnum, pnumMaxAcked, dstConnID, &c.keysAppData); sent != nil {
c.packetSent(now, appDataSpace, sent)
}
}
buf := c.w.datagram()
if len(buf) == 0 {
if limit == ccOK {
// We have nothing to send, and congestion control does not
// block sending. The congestion window is underutilized.
underutilized = true
}
return next
}
if sentInitial != nil {
if pad {
// Pad out the datagram with zeros, coalescing the Initial
// packet with invalid packets that will be ignored by the peer.
// https://www.rfc-editor.org/rfc/rfc9000.html#section-14.1-1
for len(buf) < paddedInitialDatagramSize {
buf = append(buf, 0)
// Technically this padding isn't in any packet, but
// account it to the Initial packet in this datagram
// for purposes of flow control and loss recovery.
sentInitial.size++
sentInitial.inFlight = true
}
}
// If we're a client and this Initial packet is coalesced
// with a Handshake packet, then we've discarded Initial keys
// since constructing the packet and shouldn't record it as in-flight.
if c.keysInitial.canWrite() {
c.packetSent(now, initialSpace, sentInitial)
}
}
c.endpoint.sendDatagram(datagram{
b: buf,
peerAddr: c.peerAddr,
})
}
}
func (c *Conn) packetSent(now time.Time, space numberSpace, sent *sentPacket) {
c.idleHandlePacketSent(now, sent)
c.loss.packetSent(now, c.log, space, sent)
}
func (c *Conn) appendFrames(now time.Time, space numberSpace, pnum packetNumber, limit ccLimit) {
if c.lifetime.localErr != nil {
c.appendConnectionCloseFrame(now, space, c.lifetime.localErr)
return
}
shouldSendAck := c.acks[space].shouldSendAck(now)
if limit != ccOK {
// ACKs are not limited by congestion control.
if shouldSendAck && c.appendAckFrame(now, space) {
c.acks[space].sentAck()
}
return
}
// We want to send an ACK frame if the ack controller wants to send a frame now,
// OR if we are sending a packet anyway and have ack-eliciting packets which we
// have not yet acked.
//
// We speculatively add ACK frames here, to put them at the front of the packet
// to avoid truncation.
//
// After adding all frames, if we don't need to send an ACK frame and have not
// added any other frames, we abandon the packet.
if c.appendAckFrame(now, space) {
defer func() {
// All frames other than ACK and PADDING are ack-eliciting,
// so if the packet is ack-eliciting we've added additional
// frames to it.
if !shouldSendAck && !c.w.sent.ackEliciting {
// There's nothing in this packet but ACK frames, and
// we don't want to send an ACK-only packet at this time.
// Abandoning the packet means we wrote an ACK frame for
// nothing, but constructing the frame is cheap.
c.w.abandonPacket()
return
}
// Either we are willing to send an ACK-only packet,
// or we've added additional frames.
c.acks[space].sentAck()
if !c.w.sent.ackEliciting && c.shouldMakePacketAckEliciting() {
c.w.appendPingFrame()
}
}()
}
if limit != ccOK {
return
}
pto := c.loss.ptoExpired
// TODO: Add all the other frames we can send.
// CRYPTO
c.crypto[space].dataToSend(pto, func(off, size int64) int64 {
b, _ := c.w.appendCryptoFrame(off, int(size))
c.crypto[space].sendData(off, b)
return int64(len(b))
})
// Test-only PING frames.
if space == c.testSendPingSpace && c.testSendPing.shouldSendPTO(pto) {
if !c.w.appendPingFrame() {
return
}
c.testSendPing.setSent(pnum)
}
if space == appDataSpace {
// HANDSHAKE_DONE
if c.handshakeConfirmed.shouldSendPTO(pto) {
if !c.w.appendHandshakeDoneFrame() {
return
}
c.handshakeConfirmed.setSent(pnum)
}
// NEW_CONNECTION_ID, RETIRE_CONNECTION_ID
if !c.connIDState.appendFrames(c, pnum, pto) {
return
}
// PATH_RESPONSE
if pad, ok := c.appendPathFrames(); !ok {
return
} else if pad {
defer c.w.appendPaddingTo(smallestMaxDatagramSize)
}
// All stream-related frames. This should come last in the packet,
// so large amounts of STREAM data don't crowd out other frames
// we may need to send.
if !c.appendStreamFrames(&c.w, pnum, pto) {
return
}
if !c.appendKeepAlive(now) {
return
}
}
// If this is a PTO probe and we haven't added an ack-eliciting frame yet,
// add a PING to make this an ack-eliciting probe.
//
// Technically, there are separate PTO timers for each number space.
// When a PTO timer expires, we MUST send an ack-eliciting packet in the
// timer's space. We SHOULD send ack-eliciting packets in every other space
// with in-flight data. (RFC 9002, section 6.2.4)
//
// What we actually do is send a single datagram containing an ack-eliciting packet
// for every space for which we have keys.
//
// We fill the PTO probe packets with new or unacknowledged data. For example,
// a PTO probe sent for the Initial space will generally retransmit previously
// sent but unacknowledged CRYPTO data.
//
// When sending a PTO probe datagram containing multiple packets, it is
// possible that an earlier packet will fill up the datagram, leaving no
// space for the remaining probe packet(s). This is not a problem in practice.
//
// A client discards Initial keys when it first sends a Handshake packet
// (RFC 9001 Section 4.9.1). Handshake keys are discarded when the handshake
// is confirmed (RFC 9001 Section 4.9.2). The PTO timer is not set for the
// Application Data packet number space until the handshake is confirmed
// (RFC 9002 Section 6.2.1). Therefore, the only times a PTO probe can fire
// while data for multiple spaces is in flight are:
//
// - a server's Initial or Handshake timers can fire while Initial and Handshake
// data is in flight; and
//
// - a client's Handshake timer can fire while Handshake and Application Data
// data is in flight.
//
// It is theoretically possible for a server's Initial CRYPTO data to overflow
// the maximum datagram size, but unlikely in practice; this space contains
// only the ServerHello TLS message, which is small. It's also unlikely that
// the Handshake PTO probe will fire while Initial data is in flight (this
// requires not just that the Initial CRYPTO data completely fill a datagram,
// but a quite specific arrangement of lost and retransmitted packets.)
// We don't bother worrying about this case here, since the worst case is
// that we send a PTO probe for the in-flight Initial data and drop the
// Handshake probe.
//
// If a client's Handshake PTO timer fires while Application Data data is in
// flight, it is possible that the resent Handshake CRYPTO data will crowd
// out the probe for the Application Data space. However, since this probe is
// optional (recall that the Application Data PTO timer is never set until
// after Handshake keys have been discarded), dropping it is acceptable.
if pto && !c.w.sent.ackEliciting {
c.w.appendPingFrame()
}
}
// shouldMakePacketAckEliciting is called when sending a packet containing nothing but an ACK frame.
// It reports whether we should add a PING frame to the packet to make it ack-eliciting.
func (c *Conn) shouldMakePacketAckEliciting() bool {
if c.keysAppData.needAckEliciting() {
// The peer has initiated a key update.
// We haven't sent them any packets yet in the new phase.
// Make this an ack-eliciting packet.
// Their ack of this packet will complete the key update.
return true
}
if c.loss.consecutiveNonAckElicitingPackets >= 19 {
// We've sent a run of non-ack-eliciting packets.
// Add in an ack-eliciting one every once in a while so the peer
// lets us know which ones have arrived.
//
// Google QUICHE injects a PING after sending 19 packets. We do the same.
//
// https://www.rfc-editor.org/rfc/rfc9000#section-13.2.4-2
return true
}
// TODO: Consider making every packet sent when in PTO ack-eliciting to speed up recovery.
return false
}
func (c *Conn) appendAckFrame(now time.Time, space numberSpace) bool {
seen, delay := c.acks[space].acksToSend(now)
if len(seen) == 0 {
return false
}
d := unscaledAckDelayFromDuration(delay, ackDelayExponent)
return c.w.appendAckFrame(seen, d)
}
func (c *Conn) appendConnectionCloseFrame(now time.Time, space numberSpace, err error) {
c.sentConnectionClose(now)
switch e := err.(type) {
case localTransportError:
c.w.appendConnectionCloseTransportFrame(e.code, 0, e.reason)
case *ApplicationError:
if space != appDataSpace {
// "CONNECTION_CLOSE frames signaling application errors (type 0x1d)
// MUST only appear in the application data packet number space."
// https://www.rfc-editor.org/rfc/rfc9000#section-12.5-2.2
c.w.appendConnectionCloseTransportFrame(errApplicationError, 0, "")
} else {
c.w.appendConnectionCloseApplicationFrame(e.Code, e.Reason)
}
default:
// TLS alerts are sent using error codes [0x0100,0x01ff).
// https://www.rfc-editor.org/rfc/rfc9000#section-20.1-2.36.1
var alert tls.AlertError
switch {
case errors.As(err, &alert):
// tls.AlertError is a uint8, so this can't exceed 0x01ff.
code := errTLSBase + transportError(alert)
c.w.appendConnectionCloseTransportFrame(code, 0, "")
default:
c.w.appendConnectionCloseTransportFrame(errInternal, 0, "")
}
}
}
|