1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
|
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.21
package quic
import (
"context"
"errors"
"fmt"
"io"
"math"
)
// A Stream is an ordered byte stream.
//
// Streams may be bidirectional, read-only, or write-only.
// Methods inappropriate for a stream's direction
// (for example, [Write] to a read-only stream)
// return errors.
//
// It is not safe to perform concurrent reads from or writes to a stream.
// It is safe, however, to read and write at the same time.
//
// Reads and writes are buffered.
// It is generally not necessary to wrap a stream in a [bufio.ReadWriter]
// or otherwise apply additional buffering.
//
// To cancel reads or writes, use the [SetReadContext] and [SetWriteContext] methods.
type Stream struct {
id streamID
conn *Conn
// Contexts used for read/write operations.
// Intentionally not mutex-guarded, to allow the race detector to catch concurrent access.
inctx context.Context
outctx context.Context
// ingate's lock guards receive-related state.
//
// The gate condition is set if a read from the stream will not block,
// either because the stream has available data or because the read will fail.
ingate gate
in pipe // received data
inwin int64 // last MAX_STREAM_DATA sent to the peer
insendmax sentVal // set when we should send MAX_STREAM_DATA to the peer
inmaxbuf int64 // maximum amount of data we will buffer
insize int64 // stream final size; -1 before this is known
inset rangeset[int64] // received ranges
inclosed sentVal // set by CloseRead
inresetcode int64 // RESET_STREAM code received from the peer; -1 if not reset
// outgate's lock guards send-related state.
//
// The gate condition is set if a write to the stream will not block,
// either because the stream has available flow control or because
// the write will fail.
outgate gate
out pipe // buffered data to send
outflushed int64 // offset of last flush call
outwin int64 // maximum MAX_STREAM_DATA received from the peer
outmaxsent int64 // maximum data offset we've sent to the peer
outmaxbuf int64 // maximum amount of data we will buffer
outunsent rangeset[int64] // ranges buffered but not yet sent (only flushed data)
outacked rangeset[int64] // ranges sent and acknowledged
outopened sentVal // set if we should open the stream
outclosed sentVal // set by CloseWrite
outblocked sentVal // set when a write to the stream is blocked by flow control
outreset sentVal // set by Reset
outresetcode uint64 // reset code to send in RESET_STREAM
outdone chan struct{} // closed when all data sent
// Unsynchronized buffers, used for lock-free fast path.
inbuf []byte // received data
inbufoff int // bytes of inbuf which have been consumed
outbuf []byte // written data
outbufoff int // bytes of outbuf which contain data to write
// Atomic stream state bits.
//
// These bits provide a fast way to coordinate between the
// send and receive sides of the stream, and the conn's loop.
//
// streamIn* bits must be set with ingate held.
// streamOut* bits must be set with outgate held.
// streamConn* bits are set by the conn's loop.
// streamQueue* bits must be set with streamsState.sendMu held.
state atomicBits[streamState]
prev, next *Stream // guarded by streamsState.sendMu
}
type streamState uint32
const (
// streamInSendMeta is set when there are frames to send for the
// inbound side of the stream. For example, MAX_STREAM_DATA.
// Inbound frames are never flow-controlled.
streamInSendMeta = streamState(1 << iota)
// streamOutSendMeta is set when there are non-flow-controlled frames
// to send for the outbound side of the stream. For example, STREAM_DATA_BLOCKED.
// streamOutSendData is set when there are no non-flow-controlled outbound frames
// and the stream has data to send.
//
// At most one of streamOutSendMeta and streamOutSendData is set at any time.
streamOutSendMeta
streamOutSendData
// streamInDone and streamOutDone are set when the inbound or outbound
// sides of the stream are finished. When both are set, the stream
// can be removed from the Conn and forgotten.
streamInDone
streamOutDone
// streamConnRemoved is set when the stream has been removed from the conn.
streamConnRemoved
// streamQueueMeta and streamQueueData indicate which of the streamsState
// send queues the conn is currently on.
streamQueueMeta
streamQueueData
)
type streamQueue int
const (
noQueue = streamQueue(iota)
metaQueue // streamsState.queueMeta
dataQueue // streamsState.queueData
)
// streamResetByConnClose is assigned to Stream.inresetcode to indicate that a stream
// was implicitly reset when the connection closed. It's out of the range of
// possible reset codes the peer can send.
const streamResetByConnClose = math.MaxInt64
// wantQueue returns the send queue the stream should be on.
func (s streamState) wantQueue() streamQueue {
switch {
case s&(streamInSendMeta|streamOutSendMeta) != 0:
return metaQueue
case s&(streamInDone|streamOutDone|streamConnRemoved) == streamInDone|streamOutDone:
return metaQueue
case s&streamOutSendData != 0:
// The stream has no non-flow-controlled frames to send,
// but does have data. Put it on the data queue, which is only
// processed when flow control is available.
return dataQueue
}
return noQueue
}
// inQueue returns the send queue the stream is currently on.
func (s streamState) inQueue() streamQueue {
switch {
case s&streamQueueMeta != 0:
return metaQueue
case s&streamQueueData != 0:
return dataQueue
}
return noQueue
}
// newStream returns a new stream.
//
// The stream's ingate and outgate are locked.
// (We create the stream with locked gates so after the caller
// initializes the flow control window,
// unlocking outgate will set the stream writability state.)
func newStream(c *Conn, id streamID) *Stream {
s := &Stream{
conn: c,
id: id,
insize: -1, // -1 indicates the stream size is unknown
inresetcode: -1, // -1 indicates no RESET_STREAM received
ingate: newLockedGate(),
outgate: newLockedGate(),
inctx: context.Background(),
outctx: context.Background(),
}
if !s.IsReadOnly() {
s.outdone = make(chan struct{})
}
return s
}
// SetReadContext sets the context used for reads from the stream.
//
// It is not safe to call SetReadContext concurrently.
func (s *Stream) SetReadContext(ctx context.Context) {
s.inctx = ctx
}
// SetWriteContext sets the context used for writes to the stream.
// The write context is also used by Close when waiting for writes to be
// received by the peer.
//
// It is not safe to call SetWriteContext concurrently.
func (s *Stream) SetWriteContext(ctx context.Context) {
s.outctx = ctx
}
// IsReadOnly reports whether the stream is read-only
// (a unidirectional stream created by the peer).
func (s *Stream) IsReadOnly() bool {
return s.id.streamType() == uniStream && s.id.initiator() != s.conn.side
}
// IsWriteOnly reports whether the stream is write-only
// (a unidirectional stream created locally).
func (s *Stream) IsWriteOnly() bool {
return s.id.streamType() == uniStream && s.id.initiator() == s.conn.side
}
// Read reads data from the stream.
//
// Read returns as soon as at least one byte of data is available.
//
// If the peer closes the stream cleanly, Read returns io.EOF after
// returning all data sent by the peer.
// If the peer aborts reads on the stream, Read returns
// an error wrapping StreamResetCode.
//
// It is not safe to call Read concurrently.
func (s *Stream) Read(b []byte) (n int, err error) {
if s.IsWriteOnly() {
return 0, errors.New("read from write-only stream")
}
if len(s.inbuf) > s.inbufoff {
// Fast path: If s.inbuf contains unread bytes, return them immediately
// without taking a lock.
n = copy(b, s.inbuf[s.inbufoff:])
s.inbufoff += n
return n, nil
}
if err := s.ingate.waitAndLock(s.inctx, s.conn.testHooks); err != nil {
return 0, err
}
if s.inbufoff > 0 {
// Discard bytes consumed by the fast path above.
s.in.discardBefore(s.in.start + int64(s.inbufoff))
s.inbufoff = 0
s.inbuf = nil
}
// bytesRead contains the number of bytes of connection-level flow control to return.
// We return flow control for bytes read by this Read call, as well as bytes moved
// to the fast-path read buffer (s.inbuf).
var bytesRead int64
defer func() {
s.inUnlock()
s.conn.handleStreamBytesReadOffLoop(bytesRead) // must be done with ingate unlocked
}()
if s.inresetcode != -1 {
return 0, fmt.Errorf("stream reset by peer: %w", StreamErrorCode(s.inresetcode))
}
if s.inclosed.isSet() {
return 0, errors.New("read from closed stream")
}
if s.insize == s.in.start {
return 0, io.EOF
}
// Getting here indicates the stream contains data to be read.
if len(s.inset) < 1 || s.inset[0].start != 0 || s.inset[0].end <= s.in.start {
panic("BUG: inconsistent input stream state")
}
if size := int(s.inset[0].end - s.in.start); size < len(b) {
b = b[:size]
}
bytesRead = int64(len(b))
start := s.in.start
end := start + int64(len(b))
s.in.copy(start, b)
s.in.discardBefore(end)
if end == s.insize {
// We have read up to the end of the stream.
// No need to update stream flow control.
return len(b), io.EOF
}
if len(s.inset) > 0 && s.inset[0].start <= s.in.start && s.inset[0].end > s.in.start {
// If we have more readable bytes available, put the next chunk of data
// in s.inbuf for lock-free reads.
s.inbuf = s.in.peek(s.inset[0].end - s.in.start)
bytesRead += int64(len(s.inbuf))
}
if s.insize == -1 || s.insize > s.inwin {
newWindow := s.in.start + int64(len(s.inbuf)) + s.inmaxbuf
addedWindow := newWindow - s.inwin
if shouldUpdateFlowControl(s.inmaxbuf, addedWindow) {
// Update stream flow control with a STREAM_MAX_DATA frame.
s.insendmax.setUnsent()
}
}
return len(b), nil
}
// ReadByte reads and returns a single byte from the stream.
//
// It is not safe to call ReadByte concurrently.
func (s *Stream) ReadByte() (byte, error) {
if len(s.inbuf) > s.inbufoff {
b := s.inbuf[s.inbufoff]
s.inbufoff++
return b, nil
}
var b [1]byte
n, err := s.Read(b[:])
if n > 0 {
return b[0], err
}
return 0, err
}
// shouldUpdateFlowControl determines whether to send a flow control window update.
//
// We want to balance keeping the peer well-supplied with flow control with not sending
// many small updates.
func shouldUpdateFlowControl(maxWindow, addedWindow int64) bool {
return addedWindow >= maxWindow/8
}
// Write writes data to the stream.
//
// Write writes data to the stream write buffer.
// Buffered data is only sent when the buffer is sufficiently full.
// Call the Flush method to ensure buffered data is sent.
func (s *Stream) Write(b []byte) (n int, err error) {
if s.IsReadOnly() {
return 0, errors.New("write to read-only stream")
}
if len(b) > 0 && len(s.outbuf)-s.outbufoff >= len(b) {
// Fast path: The data to write fits in s.outbuf.
copy(s.outbuf[s.outbufoff:], b)
s.outbufoff += len(b)
return len(b), nil
}
canWrite := s.outgate.lock()
s.flushFastOutputBuffer()
for {
// The first time through this loop, we may or may not be write blocked.
// We exit the loop after writing all data, so on subsequent passes through
// the loop we are always write blocked.
if len(b) > 0 && !canWrite {
// Our send buffer is full. Wait for the peer to ack some data.
s.outUnlock()
if err := s.outgate.waitAndLock(s.outctx, s.conn.testHooks); err != nil {
return n, err
}
// Successfully returning from waitAndLockGate means we are no longer
// write blocked. (Unlike traditional condition variables, gates do not
// have spurious wakeups.)
}
if s.outreset.isSet() {
s.outUnlock()
return n, errors.New("write to reset stream")
}
if s.outclosed.isSet() {
s.outUnlock()
return n, errors.New("write to closed stream")
}
if len(b) == 0 {
break
}
// Write limit is our send buffer limit.
// This is a stream offset.
lim := s.out.start + s.outmaxbuf
// Amount to write is min(the full buffer, data up to the write limit).
// This is a number of bytes.
nn := min(int64(len(b)), lim-s.out.end)
// Copy the data into the output buffer.
s.out.writeAt(b[:nn], s.out.end)
b = b[nn:]
n += int(nn)
// Possibly flush the output buffer.
// We automatically flush if:
// - We have enough data to consume the send window.
// Sending this data may cause the peer to extend the window.
// - We have buffered as much data as we're willing do.
// We need to send data to clear out buffer space.
// - We have enough data to fill a 1-RTT packet using the smallest
// possible maximum datagram size (1200 bytes, less header byte,
// connection ID, packet number, and AEAD overhead).
const autoFlushSize = smallestMaxDatagramSize - 1 - connIDLen - 1 - aeadOverhead
shouldFlush := s.out.end >= s.outwin || // peer send window is full
s.out.end >= lim || // local send buffer is full
(s.out.end-s.outflushed) >= autoFlushSize // enough data buffered
if shouldFlush {
s.flushLocked()
}
if s.out.end > s.outwin {
// We're blocked by flow control.
// Send a STREAM_DATA_BLOCKED frame to let the peer know.
s.outblocked.set()
}
// If we have bytes left to send, we're blocked.
canWrite = false
}
if lim := s.out.start + s.outmaxbuf - s.out.end - 1; lim > 0 {
// If s.out has space allocated and available to be written into,
// then reference it in s.outbuf for fast-path writes.
//
// It's perhaps a bit pointless to limit s.outbuf to the send buffer limit.
// We've already allocated this buffer so we aren't saving any memory
// by not using it.
// For now, we limit it anyway to make it easier to reason about limits.
//
// We set the limit to one less than the send buffer limit (the -1 above)
// so that a write which completely fills the buffer will overflow
// s.outbuf and trigger a flush.
s.outbuf = s.out.availableBuffer()
if int64(len(s.outbuf)) > lim {
s.outbuf = s.outbuf[:lim]
}
}
s.outUnlock()
return n, nil
}
// WriteBytes writes a single byte to the stream.
func (s *Stream) WriteByte(c byte) error {
if s.outbufoff < len(s.outbuf) {
s.outbuf[s.outbufoff] = c
s.outbufoff++
return nil
}
b := [1]byte{c}
_, err := s.Write(b[:])
return err
}
func (s *Stream) flushFastOutputBuffer() {
if s.outbuf == nil {
return
}
// Commit data previously written to s.outbuf.
// s.outbuf is a reference to a buffer in s.out, so we just need to record
// that the output buffer has been extended.
s.out.end += int64(s.outbufoff)
s.outbuf = nil
s.outbufoff = 0
}
// Flush flushes data written to the stream.
// It does not wait for the peer to acknowledge receipt of the data.
// Use Close to wait for the peer's acknowledgement.
func (s *Stream) Flush() {
s.outgate.lock()
defer s.outUnlock()
s.flushLocked()
}
func (s *Stream) flushLocked() {
s.flushFastOutputBuffer()
s.outopened.set()
if s.outflushed < s.outwin {
s.outunsent.add(s.outflushed, min(s.outwin, s.out.end))
}
s.outflushed = s.out.end
}
// Close closes the stream.
// Any blocked stream operations will be unblocked and return errors.
//
// Close flushes any data in the stream write buffer and waits for the peer to
// acknowledge receipt of the data.
// If the stream has been reset, it waits for the peer to acknowledge the reset.
// If the context expires before the peer receives the stream's data,
// Close discards the buffer and returns the context error.
func (s *Stream) Close() error {
s.CloseRead()
if s.IsReadOnly() {
return nil
}
s.CloseWrite()
// TODO: Return code from peer's RESET_STREAM frame?
if err := s.conn.waitOnDone(s.outctx, s.outdone); err != nil {
return err
}
s.outgate.lock()
defer s.outUnlock()
if s.outclosed.isReceived() && s.outacked.isrange(0, s.out.end) {
return nil
}
return errors.New("stream reset")
}
// CloseRead aborts reads on the stream.
// Any blocked reads will be unblocked and return errors.
//
// CloseRead notifies the peer that the stream has been closed for reading.
// It does not wait for the peer to acknowledge the closure.
// Use Close to wait for the peer's acknowledgement.
func (s *Stream) CloseRead() {
if s.IsWriteOnly() {
return
}
s.ingate.lock()
if s.inset.isrange(0, s.insize) || s.inresetcode != -1 {
// We've already received all data from the peer,
// so there's no need to send STOP_SENDING.
// This is the same as saying we sent one and they got it.
s.inclosed.setReceived()
} else {
s.inclosed.set()
}
discarded := s.in.end - s.in.start
s.in.discardBefore(s.in.end)
s.inUnlock()
s.conn.handleStreamBytesReadOffLoop(discarded) // must be done with ingate unlocked
}
// CloseWrite aborts writes on the stream.
// Any blocked writes will be unblocked and return errors.
//
// CloseWrite sends any data in the stream write buffer to the peer.
// It does not wait for the peer to acknowledge receipt of the data.
// Use Close to wait for the peer's acknowledgement.
func (s *Stream) CloseWrite() {
if s.IsReadOnly() {
return
}
s.outgate.lock()
defer s.outUnlock()
s.outclosed.set()
s.flushLocked()
}
// Reset aborts writes on the stream and notifies the peer
// that the stream was terminated abruptly.
// Any blocked writes will be unblocked and return errors.
//
// Reset sends the application protocol error code, which must be
// less than 2^62, to the peer.
// It does not wait for the peer to acknowledge receipt of the error.
// Use Close to wait for the peer's acknowledgement.
//
// Reset does not affect reads.
// Use CloseRead to abort reads on the stream.
func (s *Stream) Reset(code uint64) {
const userClosed = true
s.resetInternal(code, userClosed)
}
// resetInternal resets the send side of the stream.
//
// If userClosed is true, this is s.Reset.
// If userClosed is false, this is a reaction to a STOP_SENDING frame.
func (s *Stream) resetInternal(code uint64, userClosed bool) {
s.outgate.lock()
defer s.outUnlock()
if s.IsReadOnly() {
return
}
if userClosed {
// Mark that the user closed the stream.
s.outclosed.set()
}
if s.outreset.isSet() {
return
}
if code > maxVarint {
code = maxVarint
}
// We could check here to see if the stream is closed and the
// peer has acked all the data and the FIN, but sending an
// extra RESET_STREAM in this case is harmless.
s.outreset.set()
s.outresetcode = code
s.outbuf = nil
s.outbufoff = 0
s.out.discardBefore(s.out.end)
s.outunsent = rangeset[int64]{}
s.outblocked.clear()
}
// connHasClosed indicates the stream's conn has closed.
func (s *Stream) connHasClosed() {
// If we're in the closing state, the user closed the conn.
// Otherwise, we the peer initiated the close.
// This only matters for the error we're going to return from stream operations.
localClose := s.conn.lifetime.state == connStateClosing
s.ingate.lock()
if !s.inset.isrange(0, s.insize) && s.inresetcode == -1 {
if localClose {
s.inclosed.set()
} else {
s.inresetcode = streamResetByConnClose
}
}
s.inUnlock()
s.outgate.lock()
if localClose {
s.outclosed.set()
}
s.outreset.set()
s.outUnlock()
}
// inUnlock unlocks s.ingate.
// It sets the gate condition if reads from s will not block.
// If s has receive-related frames to write or if both directions
// are done and the stream should be removed, it notifies the Conn.
func (s *Stream) inUnlock() {
state := s.inUnlockNoQueue()
s.conn.maybeQueueStreamForSend(s, state)
}
// inUnlockNoQueue is inUnlock,
// but reports whether s has frames to write rather than notifying the Conn.
func (s *Stream) inUnlockNoQueue() streamState {
nextByte := s.in.start + int64(len(s.inbuf))
canRead := s.inset.contains(nextByte) || // data available to read
s.insize == s.in.start+int64(len(s.inbuf)) || // at EOF
s.inresetcode != -1 || // reset by peer
s.inclosed.isSet() // closed locally
defer s.ingate.unlock(canRead)
var state streamState
switch {
case s.IsWriteOnly():
state = streamInDone
case s.inresetcode != -1: // reset by peer
fallthrough
case s.in.start == s.insize: // all data received and read
// We don't increase MAX_STREAMS until the user calls ReadClose or Close,
// so the receive side is not finished until inclosed is set.
if s.inclosed.isSet() {
state = streamInDone
}
case s.insendmax.shouldSend(): // STREAM_MAX_DATA
state = streamInSendMeta
case s.inclosed.shouldSend(): // STOP_SENDING
state = streamInSendMeta
}
const mask = streamInDone | streamInSendMeta
return s.state.set(state, mask)
}
// outUnlock unlocks s.outgate.
// It sets the gate condition if writes to s will not block.
// If s has send-related frames to write or if both directions
// are done and the stream should be removed, it notifies the Conn.
func (s *Stream) outUnlock() {
state := s.outUnlockNoQueue()
s.conn.maybeQueueStreamForSend(s, state)
}
// outUnlockNoQueue is outUnlock,
// but reports whether s has frames to write rather than notifying the Conn.
func (s *Stream) outUnlockNoQueue() streamState {
isDone := s.outclosed.isReceived() && s.outacked.isrange(0, s.out.end) || // all data acked
s.outreset.isSet() // reset locally
if isDone {
select {
case <-s.outdone:
default:
if !s.IsReadOnly() {
close(s.outdone)
}
}
}
lim := s.out.start + s.outmaxbuf
canWrite := lim > s.out.end || // available send buffer
s.outclosed.isSet() || // closed locally
s.outreset.isSet() // reset locally
defer s.outgate.unlock(canWrite)
var state streamState
switch {
case s.IsReadOnly():
state = streamOutDone
case s.outclosed.isReceived() && s.outacked.isrange(0, s.out.end): // all data sent and acked
fallthrough
case s.outreset.isReceived(): // RESET_STREAM sent and acked
// We don't increase MAX_STREAMS until the user calls WriteClose or Close,
// so the send side is not finished until outclosed is set.
if s.outclosed.isSet() {
state = streamOutDone
}
case s.outreset.shouldSend(): // RESET_STREAM
state = streamOutSendMeta
case s.outreset.isSet(): // RESET_STREAM sent but not acknowledged
case s.outblocked.shouldSend(): // STREAM_DATA_BLOCKED
state = streamOutSendMeta
case len(s.outunsent) > 0: // STREAM frame with data
if s.outunsent.min() < s.outmaxsent {
state = streamOutSendMeta // resent data, will not consume flow control
} else {
state = streamOutSendData // new data, requires flow control
}
case s.outclosed.shouldSend() && s.out.end == s.outmaxsent: // empty STREAM frame with FIN bit
state = streamOutSendMeta
case s.outopened.shouldSend(): // STREAM frame with no data
state = streamOutSendMeta
}
const mask = streamOutDone | streamOutSendMeta | streamOutSendData
return s.state.set(state, mask)
}
// handleData handles data received in a STREAM frame.
func (s *Stream) handleData(off int64, b []byte, fin bool) error {
s.ingate.lock()
defer s.inUnlock()
end := off + int64(len(b))
if err := s.checkStreamBounds(end, fin); err != nil {
return err
}
if s.inclosed.isSet() || s.inresetcode != -1 {
// The user read-closed the stream, or the peer reset it.
// Either way, we can discard this frame.
return nil
}
if s.insize == -1 && end > s.in.end {
added := end - s.in.end
if err := s.conn.handleStreamBytesReceived(added); err != nil {
return err
}
}
s.in.writeAt(b, off)
s.inset.add(off, end)
if fin {
s.insize = end
// The peer has enough flow control window to send the entire stream.
s.insendmax.clear()
}
return nil
}
// handleReset handles a RESET_STREAM frame.
func (s *Stream) handleReset(code uint64, finalSize int64) error {
s.ingate.lock()
defer s.inUnlock()
const fin = true
if err := s.checkStreamBounds(finalSize, fin); err != nil {
return err
}
if s.inresetcode != -1 {
// The stream was already reset.
return nil
}
if s.insize == -1 {
added := finalSize - s.in.end
if err := s.conn.handleStreamBytesReceived(added); err != nil {
return err
}
}
s.conn.handleStreamBytesReadOnLoop(finalSize - s.in.start)
s.in.discardBefore(s.in.end)
s.inresetcode = int64(code)
s.insize = finalSize
return nil
}
// checkStreamBounds validates the stream offset in a STREAM or RESET_STREAM frame.
func (s *Stream) checkStreamBounds(end int64, fin bool) error {
if end > s.inwin {
// The peer sent us data past the maximum flow control window we gave them.
return localTransportError{
code: errFlowControl,
reason: "stream flow control window exceeded",
}
}
if s.insize != -1 && end > s.insize {
// The peer sent us data past the final size of the stream they previously gave us.
return localTransportError{
code: errFinalSize,
reason: "data received past end of stream",
}
}
if fin && s.insize != -1 && end != s.insize {
// The peer changed the final size of the stream.
return localTransportError{
code: errFinalSize,
reason: "final size of stream changed",
}
}
if fin && end < s.in.end {
// The peer has previously sent us data past the final size.
return localTransportError{
code: errFinalSize,
reason: "end of stream occurs before prior data",
}
}
return nil
}
// handleStopSending handles a STOP_SENDING frame.
func (s *Stream) handleStopSending(code uint64) error {
// Peer requests that we reset this stream.
// https://www.rfc-editor.org/rfc/rfc9000#section-3.5-4
const userReset = false
s.resetInternal(code, userReset)
return nil
}
// handleMaxStreamData handles an update received in a MAX_STREAM_DATA frame.
func (s *Stream) handleMaxStreamData(maxStreamData int64) error {
s.outgate.lock()
defer s.outUnlock()
if maxStreamData <= s.outwin {
return nil
}
if s.outflushed > s.outwin {
s.outunsent.add(s.outwin, min(maxStreamData, s.outflushed))
}
s.outwin = maxStreamData
if s.out.end > s.outwin {
// We've still got more data than flow control window.
s.outblocked.setUnsent()
} else {
s.outblocked.clear()
}
return nil
}
// ackOrLoss handles the fate of stream frames other than STREAM.
func (s *Stream) ackOrLoss(pnum packetNumber, ftype byte, fate packetFate) {
// Frames which carry new information each time they are sent
// (MAX_STREAM_DATA, STREAM_DATA_BLOCKED) must only be marked
// as received if the most recent packet carrying this frame is acked.
//
// Frames which are always the same (STOP_SENDING, RESET_STREAM)
// can be marked as received if any packet carrying this frame is acked.
switch ftype {
case frameTypeResetStream:
s.outgate.lock()
s.outreset.ackOrLoss(pnum, fate)
s.outUnlock()
case frameTypeStopSending:
s.ingate.lock()
s.inclosed.ackOrLoss(pnum, fate)
s.inUnlock()
case frameTypeMaxStreamData:
s.ingate.lock()
s.insendmax.ackLatestOrLoss(pnum, fate)
s.inUnlock()
case frameTypeStreamDataBlocked:
s.outgate.lock()
s.outblocked.ackLatestOrLoss(pnum, fate)
s.outUnlock()
default:
panic("unhandled frame type")
}
}
// ackOrLossData handles the fate of a STREAM frame.
func (s *Stream) ackOrLossData(pnum packetNumber, start, end int64, fin bool, fate packetFate) {
s.outgate.lock()
defer s.outUnlock()
s.outopened.ackOrLoss(pnum, fate)
if fin {
s.outclosed.ackOrLoss(pnum, fate)
}
if s.outreset.isSet() {
// If the stream has been reset, we don't care any more.
return
}
switch fate {
case packetAcked:
s.outacked.add(start, end)
s.outunsent.sub(start, end)
// If this ack is for data at the start of the send buffer, we can now discard it.
if s.outacked.contains(s.out.start) {
s.out.discardBefore(s.outacked[0].end)
}
case packetLost:
// Mark everything lost, but not previously acked, as needing retransmission.
// We do this by adding all the lost bytes to outunsent, and then
// removing everything already acked.
s.outunsent.add(start, end)
for _, a := range s.outacked {
s.outunsent.sub(a.start, a.end)
}
}
}
// appendInFramesLocked appends STOP_SENDING and MAX_STREAM_DATA frames
// to the current packet.
//
// It returns true if no more frames need appending,
// false if not everything fit in the current packet.
func (s *Stream) appendInFramesLocked(w *packetWriter, pnum packetNumber, pto bool) bool {
if s.inclosed.shouldSendPTO(pto) {
// We don't currently have an API for setting the error code.
// Just send zero.
code := uint64(0)
if !w.appendStopSendingFrame(s.id, code) {
return false
}
s.inclosed.setSent(pnum)
}
// TODO: STOP_SENDING
if s.insendmax.shouldSendPTO(pto) {
// MAX_STREAM_DATA
maxStreamData := s.in.start + s.inmaxbuf
if !w.appendMaxStreamDataFrame(s.id, maxStreamData) {
return false
}
s.inwin = maxStreamData
s.insendmax.setSent(pnum)
}
return true
}
// appendOutFramesLocked appends RESET_STREAM, STREAM_DATA_BLOCKED, and STREAM frames
// to the current packet.
//
// It returns true if no more frames need appending,
// false if not everything fit in the current packet.
func (s *Stream) appendOutFramesLocked(w *packetWriter, pnum packetNumber, pto bool) bool {
if s.outreset.isSet() {
// RESET_STREAM
if s.outreset.shouldSendPTO(pto) {
if !w.appendResetStreamFrame(s.id, s.outresetcode, min(s.outwin, s.out.end)) {
return false
}
s.outreset.setSent(pnum)
s.frameOpensStream(pnum)
}
return true
}
if s.outblocked.shouldSendPTO(pto) {
// STREAM_DATA_BLOCKED
if !w.appendStreamDataBlockedFrame(s.id, s.outwin) {
return false
}
s.outblocked.setSent(pnum)
s.frameOpensStream(pnum)
}
for {
// STREAM
off, size := dataToSend(min(s.out.start, s.outwin), min(s.outflushed, s.outwin), s.outunsent, s.outacked, pto)
if end := off + size; end > s.outmaxsent {
// This will require connection-level flow control to send.
end = min(end, s.outmaxsent+s.conn.streams.outflow.avail())
end = max(end, off)
size = end - off
}
fin := s.outclosed.isSet() && off+size == s.out.end
shouldSend := size > 0 || // have data to send
s.outopened.shouldSendPTO(pto) || // should open the stream
(fin && s.outclosed.shouldSendPTO(pto)) // should close the stream
if !shouldSend {
return true
}
b, added := w.appendStreamFrame(s.id, off, int(size), fin)
if !added {
return false
}
s.out.copy(off, b)
end := off + int64(len(b))
if end > s.outmaxsent {
s.conn.streams.outflow.consume(end - s.outmaxsent)
s.outmaxsent = end
}
s.outunsent.sub(off, end)
s.frameOpensStream(pnum)
if fin {
s.outclosed.setSent(pnum)
}
if pto {
return true
}
if int64(len(b)) < size {
return false
}
}
}
// frameOpensStream records that we're sending a frame that will open the stream.
//
// If we don't have an acknowledgement from the peer for a previous frame opening the stream,
// record this packet as being the latest one to open it.
func (s *Stream) frameOpensStream(pnum packetNumber) {
if !s.outopened.isReceived() {
s.outopened.setSent(pnum)
}
}
// dataToSend returns the next range of data to send in a STREAM or CRYPTO_STREAM.
func dataToSend(start, end int64, outunsent, outacked rangeset[int64], pto bool) (sendStart, size int64) {
switch {
case pto:
// On PTO, resend unacked data that fits in the probe packet.
// For simplicity, we send the range starting at s.out.start
// (which is definitely unacked, or else we would have discarded it)
// up to the next acked byte (if any).
//
// This may miss unacked data starting after that acked byte,
// but avoids resending data the peer has acked.
for _, r := range outacked {
if r.start > start {
return start, r.start - start
}
}
return start, end - start
case outunsent.numRanges() > 0:
return outunsent.min(), outunsent[0].size()
default:
return end, 0
}
}
|