1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package trace
// This file implements histogramming for RPC statistics collection.
import (
"bytes"
"fmt"
"html/template"
"log"
"math"
"sync"
"golang.org/x/net/internal/timeseries"
)
const (
bucketCount = 38
)
// histogram keeps counts of values in buckets that are spaced
// out in powers of 2: 0-1, 2-3, 4-7...
// histogram implements timeseries.Observable
type histogram struct {
sum int64 // running total of measurements
sumOfSquares float64 // square of running total
buckets []int64 // bucketed values for histogram
value int // holds a single value as an optimization
valueCount int64 // number of values recorded for single value
}
// addMeasurement records a value measurement observation to the histogram.
func (h *histogram) addMeasurement(value int64) {
// TODO: assert invariant
h.sum += value
h.sumOfSquares += float64(value) * float64(value)
bucketIndex := getBucket(value)
if h.valueCount == 0 || (h.valueCount > 0 && h.value == bucketIndex) {
h.value = bucketIndex
h.valueCount++
} else {
h.allocateBuckets()
h.buckets[bucketIndex]++
}
}
func (h *histogram) allocateBuckets() {
if h.buckets == nil {
h.buckets = make([]int64, bucketCount)
h.buckets[h.value] = h.valueCount
h.value = 0
h.valueCount = -1
}
}
func log2(i int64) int {
n := 0
for ; i >= 0x100; i >>= 8 {
n += 8
}
for ; i > 0; i >>= 1 {
n += 1
}
return n
}
func getBucket(i int64) (index int) {
index = log2(i) - 1
if index < 0 {
index = 0
}
if index >= bucketCount {
index = bucketCount - 1
}
return
}
// Total returns the number of recorded observations.
func (h *histogram) total() (total int64) {
if h.valueCount >= 0 {
total = h.valueCount
}
for _, val := range h.buckets {
total += int64(val)
}
return
}
// Average returns the average value of recorded observations.
func (h *histogram) average() float64 {
t := h.total()
if t == 0 {
return 0
}
return float64(h.sum) / float64(t)
}
// Variance returns the variance of recorded observations.
func (h *histogram) variance() float64 {
t := float64(h.total())
if t == 0 {
return 0
}
s := float64(h.sum) / t
return h.sumOfSquares/t - s*s
}
// StandardDeviation returns the standard deviation of recorded observations.
func (h *histogram) standardDeviation() float64 {
return math.Sqrt(h.variance())
}
// PercentileBoundary estimates the value that the given fraction of recorded
// observations are less than.
func (h *histogram) percentileBoundary(percentile float64) int64 {
total := h.total()
// Corner cases (make sure result is strictly less than Total())
if total == 0 {
return 0
} else if total == 1 {
return int64(h.average())
}
percentOfTotal := round(float64(total) * percentile)
var runningTotal int64
for i := range h.buckets {
value := h.buckets[i]
runningTotal += value
if runningTotal == percentOfTotal {
// We hit an exact bucket boundary. If the next bucket has data, it is a
// good estimate of the value. If the bucket is empty, we interpolate the
// midpoint between the next bucket's boundary and the next non-zero
// bucket. If the remaining buckets are all empty, then we use the
// boundary for the next bucket as the estimate.
j := uint8(i + 1)
min := bucketBoundary(j)
if runningTotal < total {
for h.buckets[j] == 0 {
j++
}
}
max := bucketBoundary(j)
return min + round(float64(max-min)/2)
} else if runningTotal > percentOfTotal {
// The value is in this bucket. Interpolate the value.
delta := runningTotal - percentOfTotal
percentBucket := float64(value-delta) / float64(value)
bucketMin := bucketBoundary(uint8(i))
nextBucketMin := bucketBoundary(uint8(i + 1))
bucketSize := nextBucketMin - bucketMin
return bucketMin + round(percentBucket*float64(bucketSize))
}
}
return bucketBoundary(bucketCount - 1)
}
// Median returns the estimated median of the observed values.
func (h *histogram) median() int64 {
return h.percentileBoundary(0.5)
}
// Add adds other to h.
func (h *histogram) Add(other timeseries.Observable) {
o := other.(*histogram)
if o.valueCount == 0 {
// Other histogram is empty
} else if h.valueCount >= 0 && o.valueCount > 0 && h.value == o.value {
// Both have a single bucketed value, aggregate them
h.valueCount += o.valueCount
} else {
// Two different values necessitate buckets in this histogram
h.allocateBuckets()
if o.valueCount >= 0 {
h.buckets[o.value] += o.valueCount
} else {
for i := range h.buckets {
h.buckets[i] += o.buckets[i]
}
}
}
h.sumOfSquares += o.sumOfSquares
h.sum += o.sum
}
// Clear resets the histogram to an empty state, removing all observed values.
func (h *histogram) Clear() {
h.buckets = nil
h.value = 0
h.valueCount = 0
h.sum = 0
h.sumOfSquares = 0
}
// CopyFrom copies from other, which must be a *histogram, into h.
func (h *histogram) CopyFrom(other timeseries.Observable) {
o := other.(*histogram)
if o.valueCount == -1 {
h.allocateBuckets()
copy(h.buckets, o.buckets)
}
h.sum = o.sum
h.sumOfSquares = o.sumOfSquares
h.value = o.value
h.valueCount = o.valueCount
}
// Multiply scales the histogram by the specified ratio.
func (h *histogram) Multiply(ratio float64) {
if h.valueCount == -1 {
for i := range h.buckets {
h.buckets[i] = int64(float64(h.buckets[i]) * ratio)
}
} else {
h.valueCount = int64(float64(h.valueCount) * ratio)
}
h.sum = int64(float64(h.sum) * ratio)
h.sumOfSquares = h.sumOfSquares * ratio
}
// New creates a new histogram.
func (h *histogram) New() timeseries.Observable {
r := new(histogram)
r.Clear()
return r
}
func (h *histogram) String() string {
return fmt.Sprintf("%d, %f, %d, %d, %v",
h.sum, h.sumOfSquares, h.value, h.valueCount, h.buckets)
}
// round returns the closest int64 to the argument
func round(in float64) int64 {
return int64(math.Floor(in + 0.5))
}
// bucketBoundary returns the first value in the bucket.
func bucketBoundary(bucket uint8) int64 {
if bucket == 0 {
return 0
}
return 1 << bucket
}
// bucketData holds data about a specific bucket for use in distTmpl.
type bucketData struct {
Lower, Upper int64
N int64
Pct, CumulativePct float64
GraphWidth int
}
// data holds data about a Distribution for use in distTmpl.
type data struct {
Buckets []*bucketData
Count, Median int64
Mean, StandardDeviation float64
}
// maxHTMLBarWidth is the maximum width of the HTML bar for visualizing buckets.
const maxHTMLBarWidth = 350.0
// newData returns data representing h for use in distTmpl.
func (h *histogram) newData() *data {
// Force the allocation of buckets to simplify the rendering implementation
h.allocateBuckets()
// We scale the bars on the right so that the largest bar is
// maxHTMLBarWidth pixels in width.
maxBucket := int64(0)
for _, n := range h.buckets {
if n > maxBucket {
maxBucket = n
}
}
total := h.total()
barsizeMult := maxHTMLBarWidth / float64(maxBucket)
var pctMult float64
if total == 0 {
pctMult = 1.0
} else {
pctMult = 100.0 / float64(total)
}
buckets := make([]*bucketData, len(h.buckets))
runningTotal := int64(0)
for i, n := range h.buckets {
if n == 0 {
continue
}
runningTotal += n
var upperBound int64
if i < bucketCount-1 {
upperBound = bucketBoundary(uint8(i + 1))
} else {
upperBound = math.MaxInt64
}
buckets[i] = &bucketData{
Lower: bucketBoundary(uint8(i)),
Upper: upperBound,
N: n,
Pct: float64(n) * pctMult,
CumulativePct: float64(runningTotal) * pctMult,
GraphWidth: int(float64(n) * barsizeMult),
}
}
return &data{
Buckets: buckets,
Count: total,
Median: h.median(),
Mean: h.average(),
StandardDeviation: h.standardDeviation(),
}
}
func (h *histogram) html() template.HTML {
buf := new(bytes.Buffer)
if err := distTmpl().Execute(buf, h.newData()); err != nil {
buf.Reset()
log.Printf("net/trace: couldn't execute template: %v", err)
}
return template.HTML(buf.String())
}
var distTmplCache *template.Template
var distTmplOnce sync.Once
func distTmpl() *template.Template {
distTmplOnce.Do(func() {
// Input: data
distTmplCache = template.Must(template.New("distTmpl").Parse(`
<table>
<tr>
<td style="padding:0.25em">Count: {{.Count}}</td>
<td style="padding:0.25em">Mean: {{printf "%.0f" .Mean}}</td>
<td style="padding:0.25em">StdDev: {{printf "%.0f" .StandardDeviation}}</td>
<td style="padding:0.25em">Median: {{.Median}}</td>
</tr>
</table>
<hr>
<table>
{{range $b := .Buckets}}
{{if $b}}
<tr>
<td style="padding:0 0 0 0.25em">[</td>
<td style="text-align:right;padding:0 0.25em">{{.Lower}},</td>
<td style="text-align:right;padding:0 0.25em">{{.Upper}})</td>
<td style="text-align:right;padding:0 0.25em">{{.N}}</td>
<td style="text-align:right;padding:0 0.25em">{{printf "%#.3f" .Pct}}%</td>
<td style="text-align:right;padding:0 0.25em">{{printf "%#.3f" .CumulativePct}}%</td>
<td><div style="background-color: blue; height: 1em; width: {{.GraphWidth}};"></div></td>
</tr>
{{end}}
{{end}}
</table>
`))
})
return distTmplCache
}
|