1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package nilness inspects the control-flow graph of an SSA function
// and reports errors such as nil pointer dereferences and degenerate
// nil pointer comparisons.
package nilness
import (
"fmt"
"go/token"
"go/types"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/buildssa"
"golang.org/x/tools/go/ssa"
)
const Doc = `check for redundant or impossible nil comparisons
The nilness checker inspects the control-flow graph of each function in
a package and reports nil pointer dereferences and degenerate nil
pointers. A degenerate comparison is of the form x==nil or x!=nil where x
is statically known to be nil or non-nil. These are often a mistake,
especially in control flow related to errors.
This check reports conditions such as:
if f == nil { // impossible condition (f is a function)
}
and:
p := &v
...
if p != nil { // tautological condition
}
and:
if p == nil {
print(*p) // nil dereference
}
`
var Analyzer = &analysis.Analyzer{
Name: "nilness",
Doc: Doc,
Run: run,
Requires: []*analysis.Analyzer{buildssa.Analyzer},
}
func run(pass *analysis.Pass) (interface{}, error) {
ssainput := pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA)
for _, fn := range ssainput.SrcFuncs {
runFunc(pass, fn)
}
return nil, nil
}
func runFunc(pass *analysis.Pass, fn *ssa.Function) {
reportf := func(category string, pos token.Pos, format string, args ...interface{}) {
pass.Report(analysis.Diagnostic{
Pos: pos,
Category: category,
Message: fmt.Sprintf(format, args...),
})
}
// notNil reports an error if v is provably nil.
notNil := func(stack []fact, instr ssa.Instruction, v ssa.Value, descr string) {
if nilnessOf(stack, v) == isnil {
reportf("nilderef", instr.Pos(), "nil dereference in "+descr)
}
}
// visit visits reachable blocks of the CFG in dominance order,
// maintaining a stack of dominating nilness facts.
//
// By traversing the dom tree, we can pop facts off the stack as
// soon as we've visited a subtree. Had we traversed the CFG,
// we would need to retain the set of facts for each block.
seen := make([]bool, len(fn.Blocks)) // seen[i] means visit should ignore block i
var visit func(b *ssa.BasicBlock, stack []fact)
visit = func(b *ssa.BasicBlock, stack []fact) {
if seen[b.Index] {
return
}
seen[b.Index] = true
// Report nil dereferences.
for _, instr := range b.Instrs {
switch instr := instr.(type) {
case ssa.CallInstruction:
notNil(stack, instr, instr.Common().Value,
instr.Common().Description())
case *ssa.FieldAddr:
notNil(stack, instr, instr.X, "field selection")
case *ssa.IndexAddr:
notNil(stack, instr, instr.X, "index operation")
case *ssa.MapUpdate:
notNil(stack, instr, instr.Map, "map update")
case *ssa.Slice:
// A nilcheck occurs in ptr[:] iff ptr is a pointer to an array.
if _, ok := instr.X.Type().Underlying().(*types.Pointer); ok {
notNil(stack, instr, instr.X, "slice operation")
}
case *ssa.Store:
notNil(stack, instr, instr.Addr, "store")
case *ssa.TypeAssert:
notNil(stack, instr, instr.X, "type assertion")
case *ssa.UnOp:
if instr.Op == token.MUL { // *X
notNil(stack, instr, instr.X, "load")
}
}
}
// For nil comparison blocks, report an error if the condition
// is degenerate, and push a nilness fact on the stack when
// visiting its true and false successor blocks.
if binop, tsucc, fsucc := eq(b); binop != nil {
xnil := nilnessOf(stack, binop.X)
ynil := nilnessOf(stack, binop.Y)
if ynil != unknown && xnil != unknown && (xnil == isnil || ynil == isnil) {
// Degenerate condition:
// the nilness of both operands is known,
// and at least one of them is nil.
var adj string
if (xnil == ynil) == (binop.Op == token.EQL) {
adj = "tautological"
} else {
adj = "impossible"
}
reportf("cond", binop.Pos(), "%s condition: %s %s %s", adj, xnil, binop.Op, ynil)
// If tsucc's or fsucc's sole incoming edge is impossible,
// it is unreachable. Prune traversal of it and
// all the blocks it dominates.
// (We could be more precise with full dataflow
// analysis of control-flow joins.)
var skip *ssa.BasicBlock
if xnil == ynil {
skip = fsucc
} else {
skip = tsucc
}
for _, d := range b.Dominees() {
if d == skip && len(d.Preds) == 1 {
continue
}
visit(d, stack)
}
return
}
// "if x == nil" or "if nil == y" condition; x, y are unknown.
if xnil == isnil || ynil == isnil {
var f fact
if xnil == isnil {
// x is nil, y is unknown:
// t successor learns y is nil.
f = fact{binop.Y, isnil}
} else {
// x is nil, y is unknown:
// t successor learns x is nil.
f = fact{binop.X, isnil}
}
for _, d := range b.Dominees() {
// Successor blocks learn a fact
// only at non-critical edges.
// (We could do be more precise with full dataflow
// analysis of control-flow joins.)
s := stack
if len(d.Preds) == 1 {
if d == tsucc {
s = append(s, f)
} else if d == fsucc {
s = append(s, f.negate())
}
}
visit(d, s)
}
return
}
}
for _, d := range b.Dominees() {
visit(d, stack)
}
}
// Visit the entry block. No need to visit fn.Recover.
if fn.Blocks != nil {
visit(fn.Blocks[0], make([]fact, 0, 20)) // 20 is plenty
}
}
// A fact records that a block is dominated
// by the condition v == nil or v != nil.
type fact struct {
value ssa.Value
nilness nilness
}
func (f fact) negate() fact { return fact{f.value, -f.nilness} }
type nilness int
const (
isnonnil = -1
unknown nilness = 0
isnil = 1
)
var nilnessStrings = []string{"non-nil", "unknown", "nil"}
func (n nilness) String() string { return nilnessStrings[n+1] }
// nilnessOf reports whether v is definitely nil, definitely not nil,
// or unknown given the dominating stack of facts.
func nilnessOf(stack []fact, v ssa.Value) nilness {
// Is value intrinsically nil or non-nil?
switch v := v.(type) {
case *ssa.Alloc,
*ssa.FieldAddr,
*ssa.FreeVar,
*ssa.Function,
*ssa.Global,
*ssa.IndexAddr,
*ssa.MakeChan,
*ssa.MakeClosure,
*ssa.MakeInterface,
*ssa.MakeMap,
*ssa.MakeSlice:
return isnonnil
case *ssa.Const:
if v.IsNil() {
return isnil
} else {
return isnonnil
}
}
// Search dominating control-flow facts.
for _, f := range stack {
if f.value == v {
return f.nilness
}
}
return unknown
}
// If b ends with an equality comparison, eq returns the operation and
// its true (equal) and false (not equal) successors.
func eq(b *ssa.BasicBlock) (op *ssa.BinOp, tsucc, fsucc *ssa.BasicBlock) {
if If, ok := b.Instrs[len(b.Instrs)-1].(*ssa.If); ok {
if binop, ok := If.Cond.(*ssa.BinOp); ok {
switch binop.Op {
case token.EQL:
return binop, b.Succs[0], b.Succs[1]
case token.NEQ:
return binop, b.Succs[1], b.Succs[0]
}
}
}
return nil, nil, nil
}
|