1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package analysis
// This file computes the "implements" relation over all pairs of
// named types in the program. (The mark-up is done by typeinfo.go.)
// TODO(adonovan): do we want to report implements(C, I) where C and I
// belong to different packages and at least one is not exported?
import (
"go/types"
"sort"
"golang.org/x/tools/go/types/typeutil"
)
// computeImplements computes the "implements" relation over all pairs
// of named types in allNamed.
func computeImplements(cache *typeutil.MethodSetCache, allNamed []*types.Named) map[*types.Named]implementsFacts {
// Information about a single type's method set.
type msetInfo struct {
typ types.Type
mset *types.MethodSet
mask1, mask2 uint64
}
initMsetInfo := func(info *msetInfo, typ types.Type) {
info.typ = typ
info.mset = cache.MethodSet(typ)
for i := 0; i < info.mset.Len(); i++ {
name := info.mset.At(i).Obj().Name()
info.mask1 |= 1 << methodBit(name[0])
info.mask2 |= 1 << methodBit(name[len(name)-1])
}
}
// satisfies(T, U) reports whether type T satisfies type U.
// U must be an interface.
//
// Since there are thousands of types (and thus millions of
// pairs of types) and types.Assignable(T, U) is relatively
// expensive, we compute assignability directly from the
// method sets. (At least one of T and U must be an
// interface.)
//
// We use a trick (thanks gri!) related to a Bloom filter to
// quickly reject most tests, which are false. For each
// method set, we precompute a mask, a set of bits, one per
// distinct initial byte of each method name. Thus the mask
// for io.ReadWriter would be {'R','W'}. AssignableTo(T, U)
// cannot be true unless mask(T)&mask(U)==mask(U).
//
// As with a Bloom filter, we can improve precision by testing
// additional hashes, e.g. using the last letter of each
// method name, so long as the subset mask property holds.
//
// When analyzing the standard library, there are about 1e6
// calls to satisfies(), of which 0.6% return true. With a
// 1-hash filter, 95% of calls avoid the expensive check; with
// a 2-hash filter, this grows to 98.2%.
satisfies := func(T, U *msetInfo) bool {
return T.mask1&U.mask1 == U.mask1 &&
T.mask2&U.mask2 == U.mask2 &&
containsAllIdsOf(T.mset, U.mset)
}
// Information about a named type N, and perhaps also *N.
type namedInfo struct {
isInterface bool
base msetInfo // N
ptr msetInfo // *N, iff N !isInterface
}
var infos []namedInfo
// Precompute the method sets and their masks.
for _, N := range allNamed {
var info namedInfo
initMsetInfo(&info.base, N)
_, info.isInterface = N.Underlying().(*types.Interface)
if !info.isInterface {
initMsetInfo(&info.ptr, types.NewPointer(N))
}
if info.base.mask1|info.ptr.mask1 == 0 {
continue // neither N nor *N has methods
}
infos = append(infos, info)
}
facts := make(map[*types.Named]implementsFacts)
// Test all pairs of distinct named types (T, U).
// TODO(adonovan): opt: compute (U, T) at the same time.
for t := range infos {
T := &infos[t]
var to, from, fromPtr []types.Type
for u := range infos {
if t == u {
continue
}
U := &infos[u]
switch {
case T.isInterface && U.isInterface:
if satisfies(&U.base, &T.base) {
to = append(to, U.base.typ)
}
if satisfies(&T.base, &U.base) {
from = append(from, U.base.typ)
}
case T.isInterface: // U concrete
if satisfies(&U.base, &T.base) {
to = append(to, U.base.typ)
} else if satisfies(&U.ptr, &T.base) {
to = append(to, U.ptr.typ)
}
case U.isInterface: // T concrete
if satisfies(&T.base, &U.base) {
from = append(from, U.base.typ)
} else if satisfies(&T.ptr, &U.base) {
fromPtr = append(fromPtr, U.base.typ)
}
}
}
// Sort types (arbitrarily) to avoid nondeterminism.
sort.Sort(typesByString(to))
sort.Sort(typesByString(from))
sort.Sort(typesByString(fromPtr))
facts[T.base.typ.(*types.Named)] = implementsFacts{to, from, fromPtr}
}
return facts
}
type implementsFacts struct {
to []types.Type // named or ptr-to-named types assignable to interface T
from []types.Type // named interfaces assignable from T
fromPtr []types.Type // named interfaces assignable only from *T
}
type typesByString []types.Type
func (p typesByString) Len() int { return len(p) }
func (p typesByString) Less(i, j int) bool { return p[i].String() < p[j].String() }
func (p typesByString) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// methodBit returns the index of x in [a-zA-Z], or 52 if not found.
func methodBit(x byte) uint64 {
switch {
case 'a' <= x && x <= 'z':
return uint64(x - 'a')
case 'A' <= x && x <= 'Z':
return uint64(26 + x - 'A')
}
return 52 // all other bytes
}
// containsAllIdsOf reports whether the method identifiers of T are a
// superset of those in U. If U belongs to an interface type, the
// result is equal to types.Assignable(T, U), but is cheaper to compute.
//
// TODO(gri): make this a method of *types.MethodSet.
//
func containsAllIdsOf(T, U *types.MethodSet) bool {
t, tlen := 0, T.Len()
u, ulen := 0, U.Len()
for t < tlen && u < ulen {
tMeth := T.At(t).Obj()
uMeth := U.At(u).Obj()
tId := tMeth.Id()
uId := uMeth.Id()
if tId > uId {
// U has a method T lacks: fail.
return false
}
if tId < uId {
// T has a method U lacks: ignore it.
t++
continue
}
// U and T both have a method of this Id. Check types.
if !types.Identical(tMeth.Type(), uMeth.Type()) {
return false // type mismatch
}
u++
t++
}
return u == ulen
}
|