1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
|
package source
import (
"bytes"
"context"
"fmt"
"go/ast"
"go/token"
"go/types"
"strings"
"golang.org/x/tools/go/ast/astutil"
)
type CompletionItem struct {
Label, Detail string
Kind CompletionItemKind
Score float64
}
type CompletionItemKind int
const (
Unknown CompletionItemKind = iota
InterfaceCompletionItem
StructCompletionItem
TypeCompletionItem
ConstantCompletionItem
FieldCompletionItem
ParameterCompletionItem
VariableCompletionItem
FunctionCompletionItem
MethodCompletionItem
PackageCompletionItem
)
// stdScore is the base score value set for all completion items.
const stdScore float64 = 1.0
// finder is a function used to record a completion candidate item in a list of
// completion items.
type finder func(types.Object, float64, []CompletionItem) []CompletionItem
// Completion returns a list of possible candidates for completion, given a
// a file and a position. The prefix is computed based on the preceding
// identifier and can be used by the client to score the quality of the
// completion. For instance, some clients may tolerate imperfect matches as
// valid completion results, since users may make typos.
func Completion(ctx context.Context, f File, pos token.Pos) (items []CompletionItem, prefix string, err error) {
file, err := f.GetAST()
if err != nil {
return nil, "", err
}
pkg, err := f.GetPackage()
if err != nil {
return nil, "", err
}
path, _ := astutil.PathEnclosingInterval(file, pos, pos)
if path == nil {
return nil, "", fmt.Errorf("cannot find node enclosing position")
}
// If the position is not an identifier but immediately follows
// an identifier or selector period (as is common when
// requesting a completion), use the path to the preceding node.
if _, ok := path[0].(*ast.Ident); !ok {
if p, _ := astutil.PathEnclosingInterval(file, pos-1, pos-1); p != nil {
switch p[0].(type) {
case *ast.Ident, *ast.SelectorExpr:
path = p // use preceding ident/selector
}
}
}
// Skip completion inside comment blocks.
switch path[0].(type) {
case *ast.File, *ast.BlockStmt:
if inComment(pos, file.Comments) {
return items, prefix, nil
}
}
// Save certain facts about the query position, including the expected type
// of the completion result, the signature of the function enclosing the
// position.
typ := expectedType(path, pos, pkg.TypesInfo)
sig := enclosingFunction(path, pos, pkg.TypesInfo)
pkgStringer := qualifier(file, pkg.Types, pkg.TypesInfo)
seen := make(map[types.Object]bool)
// found adds a candidate completion.
// Only the first candidate of a given name is considered.
found := func(obj types.Object, weight float64, items []CompletionItem) []CompletionItem {
if obj.Pkg() != nil && obj.Pkg() != pkg.Types && !obj.Exported() {
return items // inaccessible
}
if !seen[obj] {
seen[obj] = true
if typ != nil && matchingTypes(typ, obj.Type()) {
weight *= 10.0
}
item := formatCompletion(obj, pkgStringer, weight, func(v *types.Var) bool {
return isParameter(sig, v)
})
items = append(items, item)
}
return items
}
// The position is within a composite literal.
if items, prefix, ok := complit(path, pos, pkg.Types, pkg.TypesInfo, found); ok {
return items, prefix, nil
}
switch n := path[0].(type) {
case *ast.Ident:
// Set the filter prefix.
prefix = n.Name[:pos-n.Pos()]
// Is this the Sel part of a selector?
if sel, ok := path[1].(*ast.SelectorExpr); ok && sel.Sel == n {
items, err = selector(sel, pos, pkg.TypesInfo, found)
return items, prefix, err
}
// reject defining identifiers
if obj, ok := pkg.TypesInfo.Defs[n]; ok {
if v, ok := obj.(*types.Var); ok && v.IsField() {
// An anonymous field is also a reference to a type.
} else {
of := ""
if obj != nil {
qual := types.RelativeTo(pkg.Types)
of += ", of " + types.ObjectString(obj, qual)
}
return nil, "", fmt.Errorf("this is a definition%s", of)
}
}
items = append(items, lexical(path, pos, pkg.Types, pkg.TypesInfo, found)...)
// The function name hasn't been typed yet, but the parens are there:
// recv.‸(arg)
case *ast.TypeAssertExpr:
// Create a fake selector expression.
items, err = selector(&ast.SelectorExpr{X: n.X}, pos, pkg.TypesInfo, found)
return items, prefix, err
case *ast.SelectorExpr:
items, err = selector(n, pos, pkg.TypesInfo, found)
return items, prefix, err
default:
// fallback to lexical completions
return lexical(path, pos, pkg.Types, pkg.TypesInfo, found), "", nil
}
return items, prefix, nil
}
// selector finds completions for
// the specified selector expression.
// TODO(rstambler): Set the prefix filter correctly for selectors.
func selector(sel *ast.SelectorExpr, pos token.Pos, info *types.Info, found finder) (items []CompletionItem, err error) {
// Is sel a qualified identifier?
if id, ok := sel.X.(*ast.Ident); ok {
if pkgname, ok := info.Uses[id].(*types.PkgName); ok {
// Enumerate package members.
// TODO(adonovan): can Imported() be nil?
scope := pkgname.Imported().Scope()
// TODO testcase: bad import
for _, name := range scope.Names() {
items = found(scope.Lookup(name), stdScore, items)
}
return items, nil
}
}
// Inv: sel is a true selector.
tv, ok := info.Types[sel.X]
if !ok {
return nil, fmt.Errorf("cannot resolve %s", sel.X)
}
// methods of T
mset := types.NewMethodSet(tv.Type)
for i := 0; i < mset.Len(); i++ {
items = found(mset.At(i).Obj(), stdScore, items)
}
// methods of *T
if tv.Addressable() && !types.IsInterface(tv.Type) && !isPointer(tv.Type) {
mset := types.NewMethodSet(types.NewPointer(tv.Type))
for i := 0; i < mset.Len(); i++ {
items = found(mset.At(i).Obj(), stdScore, items)
}
}
// fields of T
for _, f := range fieldSelections(tv.Type) {
items = found(f, stdScore, items)
}
return items, nil
}
// lexical finds completions in the lexical environment.
func lexical(path []ast.Node, pos token.Pos, pkg *types.Package, info *types.Info, found finder) (items []CompletionItem) {
var scopes []*types.Scope // scopes[i], where i<len(path), is the possibly nil Scope of path[i].
for _, n := range path {
switch node := n.(type) {
case *ast.FuncDecl:
n = node.Type
case *ast.FuncLit:
n = node.Type
}
scopes = append(scopes, info.Scopes[n])
}
scopes = append(scopes, pkg.Scope(), types.Universe)
// Process scopes innermost first.
for i, scope := range scopes {
if scope == nil {
continue
}
for _, name := range scope.Names() {
declScope, obj := scope.LookupParent(name, pos)
if declScope != scope {
continue // Name was declared in some enclosing scope, or not at all.
}
// If obj's type is invalid, find the AST node that defines the lexical block
// containing the declaration of obj. Don't resolve types for packages.
if _, ok := obj.(*types.PkgName); !ok && obj.Type() == types.Typ[types.Invalid] {
// Match the scope to its ast.Node. If the scope is the package scope,
// use the *ast.File as the starting node.
var node ast.Node
if i < len(path) {
node = path[i]
} else if i == len(path) { // use the *ast.File for package scope
node = path[i-1]
}
if node != nil {
if resolved := resolveInvalid(obj, node, info); resolved != nil {
obj = resolved
}
}
}
score := stdScore
// Rank builtins significantly lower than other results.
if scope == types.Universe {
score *= 0.1
}
items = found(obj, score, items)
}
}
return items
}
// inComment checks if given token position is inside ast.Comment node.
func inComment(pos token.Pos, commentGroups []*ast.CommentGroup) bool {
for _, g := range commentGroups {
for _, c := range g.List {
if c.Pos() <= pos && pos <= c.End() {
return true
}
}
}
return false
}
// complit finds completions for field names inside a composite literal.
// It reports whether the node was handled as part of a composite literal.
func complit(path []ast.Node, pos token.Pos, pkg *types.Package, info *types.Info, found finder) (items []CompletionItem, prefix string, ok bool) {
var lit *ast.CompositeLit
// First, determine if the pos is within a composite literal.
switch n := path[0].(type) {
case *ast.CompositeLit:
// The enclosing node will be a composite literal if the user has just
// opened the curly brace (e.g. &x{<>) or the completion request is triggered
// from an already completed composite literal expression (e.g. &x{foo: 1, <>})
//
// If the cursor position is within a key-value expression inside the composite
// literal, we try to determine if it is before or after the colon. If it is before
// the colon, we return field completions. If the cursor does not belong to any
// expression within the composite literal, we show composite literal completions.
var expr ast.Expr
for _, e := range n.Elts {
if e.Pos() <= pos && pos < e.End() {
expr = e
break
}
}
lit = n
// If the position belongs to a key-value expression and is after the colon,
// don't show composite literal completions.
if kv, ok := expr.(*ast.KeyValueExpr); ok && pos > kv.Colon {
lit = nil
}
case *ast.KeyValueExpr:
// If the enclosing node is a key-value expression (e.g. &x{foo: <>}),
// we show composite literal completions if the cursor position is before the colon.
if len(path) > 1 && pos < n.Colon {
if l, ok := path[1].(*ast.CompositeLit); ok {
lit = l
}
}
case *ast.Ident:
prefix = n.Name[:pos-n.Pos()]
// If the enclosing node is an identifier, it can either be an identifier that is
// part of a composite literal (e.g. &x{fo<>}), or it can be an identifier that is
// part of a key-value expression, which is part of a composite literal (e.g. &x{foo: ba<>).
// We handle both of these cases, showing composite literal completions only if
// the cursor position for the key-value expression is before the colon.
if len(path) > 1 {
if l, ok := path[1].(*ast.CompositeLit); ok {
lit = l
} else if len(path) > 2 {
if l, ok := path[2].(*ast.CompositeLit); ok {
// Confirm that cursor position is inside curly braces.
if l.Lbrace <= pos && pos <= l.Rbrace {
lit = l
if kv, ok := path[1].(*ast.KeyValueExpr); ok {
if pos > kv.Colon {
lit = nil
}
}
}
}
}
}
}
// We are not in a composite literal.
if lit == nil {
return nil, prefix, false
}
// Mark fields of the composite literal that have already been set,
// except for the current field.
hasKeys := false // true if the composite literal already has key-value pairs
addedFields := make(map[*types.Var]bool)
for _, el := range lit.Elts {
if kv, ok := el.(*ast.KeyValueExpr); ok {
hasKeys = true
if kv.Pos() <= pos && pos <= kv.End() {
continue
}
if key, ok := kv.Key.(*ast.Ident); ok {
if used, ok := info.Uses[key]; ok {
if usedVar, ok := used.(*types.Var); ok {
addedFields[usedVar] = true
}
}
}
}
}
// If the underlying type of the composite literal is a struct,
// collect completions for the fields of this struct.
if tv, ok := info.Types[lit]; ok {
var structPkg *types.Package // package containing the struct type declaration
if s, ok := tv.Type.Underlying().(*types.Struct); ok {
for i := 0; i < s.NumFields(); i++ {
field := s.Field(i)
if i == 0 {
structPkg = field.Pkg()
}
if !addedFields[field] {
items = found(field, 10.0, items)
}
}
// Add lexical completions if the user hasn't typed a key value expression
// and if the struct fields are defined in the same package as the user is in.
if !hasKeys && structPkg == pkg {
items = append(items, lexical(path, pos, pkg, info, found)...)
}
return items, prefix, true
}
}
return items, prefix, false
}
// formatCompletion creates a completion item for a given types.Object.
func formatCompletion(obj types.Object, qualifier types.Qualifier, score float64, isParam func(*types.Var) bool) CompletionItem {
label := obj.Name()
detail := types.TypeString(obj.Type(), qualifier)
var kind CompletionItemKind
switch o := obj.(type) {
case *types.TypeName:
detail, kind = formatType(o.Type(), qualifier)
if obj.Parent() == types.Universe {
detail = ""
}
case *types.Const:
if obj.Parent() == types.Universe {
detail = ""
} else {
val := o.Val().ExactString()
if !strings.Contains(val, "\\n") { // skip any multiline constants
label += " = " + o.Val().ExactString()
}
}
kind = ConstantCompletionItem
case *types.Var:
if _, ok := o.Type().(*types.Struct); ok {
detail = "struct{...}" // for anonymous structs
}
if o.IsField() {
kind = FieldCompletionItem
} else if isParam(o) {
kind = ParameterCompletionItem
} else {
kind = VariableCompletionItem
}
case *types.Func:
if sig, ok := o.Type().(*types.Signature); ok {
label += formatParams(sig.Params(), sig.Variadic(), qualifier)
detail = strings.Trim(types.TypeString(sig.Results(), qualifier), "()")
kind = FunctionCompletionItem
if sig.Recv() != nil {
kind = MethodCompletionItem
}
}
case *types.Builtin:
item, ok := builtinDetails[obj.Name()]
if !ok {
break
}
label, detail = item.label, item.detail
kind = FunctionCompletionItem
case *types.PkgName:
kind = PackageCompletionItem
detail = fmt.Sprintf("\"%s\"", o.Imported().Path())
case *types.Nil:
kind = VariableCompletionItem
detail = ""
}
detail = strings.TrimPrefix(detail, "untyped ")
return CompletionItem{
Label: label,
Detail: detail,
Kind: kind,
Score: score,
}
}
// formatType returns the detail and kind for an object of type *types.TypeName.
func formatType(typ types.Type, qualifier types.Qualifier) (detail string, kind CompletionItemKind) {
if types.IsInterface(typ) {
detail = "interface{...}"
kind = InterfaceCompletionItem
} else if _, ok := typ.(*types.Struct); ok {
detail = "struct{...}"
kind = StructCompletionItem
} else if typ != typ.Underlying() {
detail, kind = formatType(typ.Underlying(), qualifier)
} else {
detail = types.TypeString(typ, qualifier)
kind = TypeCompletionItem
}
return detail, kind
}
// formatParams correctly format the parameters of a function.
func formatParams(t *types.Tuple, variadic bool, qualifier types.Qualifier) string {
var b bytes.Buffer
b.WriteByte('(')
for i := 0; i < t.Len(); i++ {
if i > 0 {
b.WriteString(", ")
}
el := t.At(i)
typ := types.TypeString(el.Type(), qualifier)
// Handle a variadic parameter (can only be the final parameter).
if variadic && i == t.Len()-1 {
typ = strings.Replace(typ, "[]", "...", 1)
}
fmt.Fprintf(&b, "%v %v", el.Name(), typ)
}
b.WriteByte(')')
return b.String()
}
// isParameter returns true if the given *types.Var is a parameter to the given
// *types.Signature.
func isParameter(sig *types.Signature, v *types.Var) bool {
if sig == nil {
return false
}
for i := 0; i < sig.Params().Len(); i++ {
if sig.Params().At(i) == v {
return true
}
}
return false
}
// qualifier returns a function that appropriately formats a types.PkgName
// appearing in a *ast.File.
func qualifier(f *ast.File, pkg *types.Package, info *types.Info) types.Qualifier {
// Construct mapping of import paths to their defined or implicit names.
imports := make(map[*types.Package]string)
for _, imp := range f.Imports {
var obj types.Object
if imp.Name != nil {
obj = info.Defs[imp.Name]
} else {
obj = info.Implicits[imp]
}
if pkgname, ok := obj.(*types.PkgName); ok {
imports[pkgname.Imported()] = pkgname.Name()
}
}
// Define qualifier to replace full package paths with names of the imports.
return func(p *types.Package) string {
if p == pkg {
return ""
}
if name, ok := imports[p]; ok {
return name
}
return p.Name()
}
}
// enclosingFunction returns the signature of the function enclosing the given
// position.
func enclosingFunction(path []ast.Node, pos token.Pos, info *types.Info) *types.Signature {
for _, node := range path {
switch t := node.(type) {
case *ast.FuncDecl:
if obj, ok := info.Defs[t.Name]; ok {
return obj.Type().(*types.Signature)
}
case *ast.FuncLit:
if typ, ok := info.Types[t]; ok {
return typ.Type.(*types.Signature)
}
}
}
return nil
}
// expectedType returns the expected type for an expression at the query position.
func expectedType(path []ast.Node, pos token.Pos, info *types.Info) types.Type {
for i, node := range path {
if i == 2 {
break
}
switch expr := node.(type) {
case *ast.BinaryExpr:
// Determine if query position comes from left or right of op.
e := expr.X
if pos < expr.OpPos {
e = expr.Y
}
if tv, ok := info.Types[e]; ok {
return tv.Type
}
case *ast.AssignStmt:
// Only rank completions if you are on the right side of the token.
if pos <= expr.TokPos {
break
}
i := exprAtPos(pos, expr.Rhs)
if i >= len(expr.Lhs) {
i = len(expr.Lhs) - 1
}
if tv, ok := info.Types[expr.Lhs[i]]; ok {
return tv.Type
}
case *ast.CallExpr:
if tv, ok := info.Types[expr.Fun]; ok {
if sig, ok := tv.Type.(*types.Signature); ok {
if sig.Params().Len() == 0 {
return nil
}
i := exprAtPos(pos, expr.Args)
// Make sure not to run past the end of expected parameters.
if i >= sig.Params().Len() {
i = sig.Params().Len() - 1
}
return sig.Params().At(i).Type()
}
}
}
}
return nil
}
// matchingTypes reports whether actual is a good candidate type
// for a completion in a context of the expected type.
func matchingTypes(expected, actual types.Type) bool {
// Use a function's return type as its type.
if sig, ok := actual.(*types.Signature); ok {
if sig.Results().Len() == 1 {
actual = sig.Results().At(0).Type()
}
}
return types.Identical(types.Default(expected), types.Default(actual))
}
// exprAtPos returns the index of the expression containing pos.
func exprAtPos(pos token.Pos, args []ast.Expr) int {
for i, expr := range args {
if expr.Pos() <= pos && pos <= expr.End() {
return i
}
}
return len(args)
}
// fieldSelections returns the set of fields that can
// be selected from a value of type T.
func fieldSelections(T types.Type) (fields []*types.Var) {
// TODO(adonovan): this algorithm doesn't exclude ambiguous
// selections that match more than one field/method.
// types.NewSelectionSet should do that for us.
seen := make(map[types.Type]bool) // for termination on recursive types
var visit func(T types.Type)
visit = func(T types.Type) {
if !seen[T] {
seen[T] = true
if T, ok := deref(T).Underlying().(*types.Struct); ok {
for i := 0; i < T.NumFields(); i++ {
f := T.Field(i)
fields = append(fields, f)
if f.Anonymous() {
visit(f.Type())
}
}
}
}
}
visit(T)
return fields
}
func isPointer(T types.Type) bool {
_, ok := T.(*types.Pointer)
return ok
}
// deref returns a pointer's element type; otherwise it returns typ.
func deref(typ types.Type) types.Type {
if p, ok := typ.Underlying().(*types.Pointer); ok {
return p.Elem()
}
return typ
}
// resolveInvalid traverses the node of the AST that defines the scope
// containing the declaration of obj, and attempts to find a user-friendly
// name for its invalid type. The resulting Object and its Type are fake.
func resolveInvalid(obj types.Object, node ast.Node, info *types.Info) types.Object {
// Construct a fake type for the object and return a fake object with this type.
formatResult := func(expr ast.Expr) types.Object {
var typename string
switch t := expr.(type) {
case *ast.SelectorExpr:
typename = fmt.Sprintf("%s.%s", t.X, t.Sel)
case *ast.Ident:
typename = t.String()
default:
return nil
}
typ := types.NewNamed(types.NewTypeName(token.NoPos, obj.Pkg(), typename, nil), nil, nil)
return types.NewVar(obj.Pos(), obj.Pkg(), obj.Name(), typ)
}
var resultExpr ast.Expr
ast.Inspect(node, func(node ast.Node) bool {
switch n := node.(type) {
case *ast.ValueSpec:
for _, name := range n.Names {
if info.Defs[name] == obj {
resultExpr = n.Type
}
}
return false
case *ast.Field: // This case handles parameters and results of a FuncDecl or FuncLit.
for _, name := range n.Names {
if info.Defs[name] == obj {
resultExpr = n.Type
}
}
return false
// TODO(rstambler): Handle range statements.
default:
return true
}
})
return formatResult(resultExpr)
}
type itemDetails struct {
label, detail string
}
var builtinDetails = map[string]itemDetails{
"append": { // append(slice []T, elems ...T)
label: "append(slice []T, elems ...T)",
detail: "[]T",
},
"cap": { // cap(v []T) int
label: "cap(v []T)",
detail: "int",
},
"close": { // close(c chan<- T)
label: "close(c chan<- T)",
},
"complex": { // complex(r, i float64) complex128
label: "complex(real float64, imag float64)",
detail: "complex128",
},
"copy": { // copy(dst, src []T) int
label: "copy(dst []T, src []T)",
detail: "int",
},
"delete": { // delete(m map[T]T1, key T)
label: "delete(m map[K]V, key K)",
},
"imag": { // imag(c complex128) float64
label: "imag(complex128)",
detail: "float64",
},
"len": { // len(v T) int
label: "len(T)",
detail: "int",
},
"make": { // make(t T, size ...int) T
label: "make(t T, size ...int)",
detail: "T",
},
"new": { // new(T) *T
label: "new(T)",
detail: "*T",
},
"panic": { // panic(v interface{})
label: "panic(interface{})",
},
"print": { // print(args ...T)
label: "print(args ...T)",
},
"println": { // println(args ...T)
label: "println(args ...T)",
},
"real": { // real(c complex128) float64
label: "real(complex128)",
detail: "float64",
},
"recover": { // recover() interface{}
label: "recover()",
detail: "interface{}",
},
}
|