1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
|
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package source
import (
"context"
"fmt"
"go/ast"
"go/token"
"go/types"
"sort"
"strings"
"unicode"
"unicode/utf8"
"golang.org/x/tools/internal/event"
"golang.org/x/tools/internal/lsp/fuzzy"
"golang.org/x/tools/internal/lsp/protocol"
"golang.org/x/tools/internal/span"
)
// maxSymbols defines the maximum number of symbol results that should ever be
// sent in response to a client.
const maxSymbols = 100
// WorkspaceSymbols matches symbols across all views using the given query,
// according to the match semantics parameterized by matcherType and style.
//
// The workspace symbol method is defined in the spec as follows:
//
// The workspace symbol request is sent from the client to the server to
// list project-wide symbols matching the query string.
//
// It is unclear what "project-wide" means here, but given the parameters of
// workspace/symbol do not include any workspace identifier, then it has to be
// assumed that "project-wide" means "across all workspaces". Hence why
// WorkspaceSymbols receives the views []View.
//
// However, it then becomes unclear what it would mean to call WorkspaceSymbols
// with a different configured SymbolMatcher per View. Therefore we assume that
// Session level configuration will define the SymbolMatcher to be used for the
// WorkspaceSymbols method.
func WorkspaceSymbols(ctx context.Context, matcherType SymbolMatcher, style SymbolStyle, views []View, query string) ([]protocol.SymbolInformation, error) {
ctx, done := event.Start(ctx, "source.WorkspaceSymbols")
defer done()
if query == "" {
return nil, nil
}
sc := newSymbolCollector(matcherType, style, query)
return sc.walk(ctx, views)
}
// A matcherFunc determines the matching score of a symbol.
//
// See the comment for symbolCollector for more information.
type matcherFunc func(name string) float64
// A symbolizer returns the best symbol match for name with pkg, according to
// some heuristic.
//
// See the comment for symbolCollector for more information.
type symbolizer func(name string, pkg Package, m matcherFunc) (string, float64)
func fullyQualifiedSymbolMatch(name string, pkg Package, matcher matcherFunc) (string, float64) {
_, score := dynamicSymbolMatch(name, pkg, matcher)
if score > 0 {
return pkg.PkgPath() + "." + name, score
}
return "", 0
}
func dynamicSymbolMatch(name string, pkg Package, matcher matcherFunc) (string, float64) {
// Prefer any package-qualified match.
pkgQualified := pkg.Name() + "." + name
if match, score := bestMatch(pkgQualified, matcher); match != "" {
return match, score
}
fullyQualified := pkg.PkgPath() + "." + name
if match, score := bestMatch(fullyQualified, matcher); match != "" {
return match, score
}
return "", 0
}
func packageSymbolMatch(name string, pkg Package, matcher matcherFunc) (string, float64) {
qualified := pkg.Name() + "." + name
if matcher(qualified) > 0 {
return qualified, 1
}
return "", 0
}
// bestMatch returns the highest scoring symbol suffix of fullPath, starting
// from the right and splitting on selectors and path components.
//
// e.g. given a symbol path of the form 'host.com/dir/pkg.type.field', we
// check the match quality of the following:
// - field
// - type.field
// - pkg.type.field
// - dir/pkg.type.field
// - host.com/dir/pkg.type.field
//
// and return the best match, along with its score.
//
// This is used to implement the 'dynamic' symbol style.
func bestMatch(fullPath string, matcher matcherFunc) (string, float64) {
pathParts := strings.Split(fullPath, "/")
dottedParts := strings.Split(pathParts[len(pathParts)-1], ".")
var best string
var score float64
for i := 0; i < len(dottedParts); i++ {
path := strings.Join(dottedParts[len(dottedParts)-1-i:], ".")
if match := matcher(path); match > score {
best = path
score = match
}
}
for i := 0; i < len(pathParts); i++ {
path := strings.Join(pathParts[len(pathParts)-1-i:], "/")
if match := matcher(path); match > score {
best = path
score = match
}
}
return best, score
}
// symbolCollector holds context as we walk Packages, gathering symbols that
// match a given query.
//
// How we match symbols is parameterized by two interfaces:
// * A matcherFunc determines how well a string symbol matches a query. It
// returns a non-negative score indicating the quality of the match. A score
// of zero indicates no match.
// * A symbolizer determines how we extract the symbol for an object. This
// enables the 'symbolStyle' configuration option.
type symbolCollector struct {
// These types parameterize the symbol-matching pass.
matcher matcherFunc
symbolizer symbolizer
// current holds metadata for the package we are currently walking.
current *pkgView
curFile *ParsedGoFile
res [maxSymbols]symbolInformation
}
func newSymbolCollector(matcher SymbolMatcher, style SymbolStyle, query string) *symbolCollector {
var m matcherFunc
switch matcher {
case SymbolFuzzy:
m = parseQuery(query)
case SymbolCaseSensitive:
m = func(s string) float64 {
if strings.Contains(s, query) {
return 1
}
return 0
}
case SymbolCaseInsensitive:
q := strings.ToLower(query)
m = func(s string) float64 {
if strings.Contains(strings.ToLower(s), q) {
return 1
}
return 0
}
default:
panic(fmt.Errorf("unknown symbol matcher: %v", matcher))
}
var s symbolizer
switch style {
case DynamicSymbols:
s = dynamicSymbolMatch
case FullyQualifiedSymbols:
s = fullyQualifiedSymbolMatch
case PackageQualifiedSymbols:
s = packageSymbolMatch
default:
panic(fmt.Errorf("unknown symbol style: %v", style))
}
return &symbolCollector{
matcher: m,
symbolizer: s,
}
}
// parseQuery parses a field-separated symbol query, extracting the special
// characters listed below, and returns a matcherFunc corresponding to the AND
// of all field queries.
//
// Special characters:
// ^ match exact prefix
// $ match exact suffix
// ' match exact
//
// In all three of these special queries, matches are 'smart-cased', meaning
// they are case sensitive if the symbol query contains any upper-case
// characters, and case insensitive otherwise.
func parseQuery(q string) matcherFunc {
fields := strings.Fields(q)
if len(fields) == 0 {
return func(string) float64 { return 0 }
}
var funcs []matcherFunc
for _, field := range fields {
var f matcherFunc
switch {
case strings.HasPrefix(field, "^"):
prefix := field[1:]
f = smartCase(prefix, func(s string) float64 {
if strings.HasPrefix(s, prefix) {
return 1
}
return 0
})
case strings.HasPrefix(field, "'"):
exact := field[1:]
f = smartCase(exact, func(s string) float64 {
if strings.Contains(s, exact) {
return 1
}
return 0
})
case strings.HasSuffix(field, "$"):
suffix := field[0 : len(field)-1]
f = smartCase(suffix, func(s string) float64 {
if strings.HasSuffix(s, suffix) {
return 1
}
return 0
})
default:
fm := fuzzy.NewMatcher(field)
f = func(s string) float64 {
return float64(fm.Score(s))
}
}
funcs = append(funcs, f)
}
return comboMatcher(funcs).match
}
// smartCase returns a matcherFunc that is case-sensitive if q contains any
// upper-case characters, and case-insensitive otherwise.
func smartCase(q string, m matcherFunc) matcherFunc {
insensitive := strings.ToLower(q) == q
return func(s string) float64 {
if insensitive {
s = strings.ToLower(s)
}
return m(s)
}
}
type comboMatcher []matcherFunc
func (c comboMatcher) match(s string) float64 {
score := 1.0
for _, f := range c {
score *= f(s)
}
return score
}
// walk walks views, gathers symbols, and returns the results.
func (sc *symbolCollector) walk(ctx context.Context, views []View) (_ []protocol.SymbolInformation, err error) {
toWalk, err := sc.collectPackages(ctx, views)
if err != nil {
return nil, err
}
// Make sure we only walk files once (we might see them more than once due to
// build constraints).
seen := make(map[span.URI]bool)
for _, pv := range toWalk {
sc.current = pv
for _, pgf := range pv.pkg.CompiledGoFiles() {
if seen[pgf.URI] {
continue
}
seen[pgf.URI] = true
sc.curFile = pgf
sc.walkFilesDecls(pgf.File.Decls)
}
}
return sc.results(), nil
}
func (sc *symbolCollector) results() []protocol.SymbolInformation {
var res []protocol.SymbolInformation
for _, si := range sc.res {
if si.score <= 0 {
return res
}
res = append(res, si.asProtocolSymbolInformation())
}
return res
}
// collectPackages gathers all known packages and sorts for stability.
func (sc *symbolCollector) collectPackages(ctx context.Context, views []View) ([]*pkgView, error) {
var toWalk []*pkgView
for _, v := range views {
snapshot, release := v.Snapshot(ctx)
defer release()
knownPkgs, err := snapshot.KnownPackages(ctx)
if err != nil {
return nil, err
}
workspacePackages, err := snapshot.WorkspacePackages(ctx)
if err != nil {
return nil, err
}
isWorkspacePkg := make(map[Package]bool)
for _, wp := range workspacePackages {
isWorkspacePkg[wp] = true
}
for _, pkg := range knownPkgs {
toWalk = append(toWalk, &pkgView{
pkg: pkg,
isWorkspace: isWorkspacePkg[pkg],
})
}
}
// Now sort for stability of results. We order by
// (pkgView.isWorkspace, pkgView.p.ID())
sort.Slice(toWalk, func(i, j int) bool {
lhs := toWalk[i]
rhs := toWalk[j]
switch {
case lhs.isWorkspace == rhs.isWorkspace:
return lhs.pkg.ID() < rhs.pkg.ID()
case lhs.isWorkspace:
return true
default:
return false
}
})
return toWalk, nil
}
func (sc *symbolCollector) walkFilesDecls(decls []ast.Decl) {
for _, decl := range decls {
switch decl := decl.(type) {
case *ast.FuncDecl:
kind := protocol.Function
var recv *ast.Ident
if decl.Recv != nil {
kind = protocol.Method
switch typ := decl.Recv.List[0].Type.(type) {
case *ast.StarExpr:
recv = typ.X.(*ast.Ident)
case *ast.Ident:
recv = typ
}
}
if recv != nil {
sc.match(decl.Name.Name, kind, decl.Name, recv)
} else {
sc.match(decl.Name.Name, kind, decl.Name)
}
case *ast.GenDecl:
for _, spec := range decl.Specs {
switch spec := spec.(type) {
case *ast.TypeSpec:
sc.match(spec.Name.Name, typeToKind(sc.current.pkg.GetTypesInfo().TypeOf(spec.Type)), spec.Name)
sc.walkType(spec.Type, spec.Name)
case *ast.ValueSpec:
for _, name := range spec.Names {
kind := protocol.Variable
if decl.Tok == token.CONST {
kind = protocol.Constant
}
sc.match(name.Name, kind, name)
}
}
}
}
}
}
// walkType processes symbols related to a type expression. path is path of
// nested type identifiers to the type expression.
func (sc *symbolCollector) walkType(typ ast.Expr, path ...*ast.Ident) {
switch st := typ.(type) {
case *ast.StructType:
for _, field := range st.Fields.List {
sc.walkField(field, protocol.Field, protocol.Field, path...)
}
case *ast.InterfaceType:
for _, field := range st.Methods.List {
sc.walkField(field, protocol.Interface, protocol.Method, path...)
}
}
}
// walkField processes symbols related to the struct field or interface method.
//
// unnamedKind and namedKind are the symbol kinds if the field is resp. unnamed
// or named. path is the path of nested identifiers containing the field.
func (sc *symbolCollector) walkField(field *ast.Field, unnamedKind, namedKind protocol.SymbolKind, path ...*ast.Ident) {
if len(field.Names) == 0 {
sc.match(types.ExprString(field.Type), unnamedKind, field, path...)
}
for _, name := range field.Names {
sc.match(name.Name, namedKind, name, path...)
sc.walkType(field.Type, append(path, name)...)
}
}
func typeToKind(typ types.Type) protocol.SymbolKind {
switch typ := typ.Underlying().(type) {
case *types.Interface:
return protocol.Interface
case *types.Struct:
return protocol.Struct
case *types.Signature:
if typ.Recv() != nil {
return protocol.Method
}
return protocol.Function
case *types.Named:
return typeToKind(typ.Underlying())
case *types.Basic:
i := typ.Info()
switch {
case i&types.IsNumeric != 0:
return protocol.Number
case i&types.IsBoolean != 0:
return protocol.Boolean
case i&types.IsString != 0:
return protocol.String
}
}
return protocol.Variable
}
// match finds matches and gathers the symbol identified by name, kind and node
// via the symbolCollector's matcher after first de-duping against previously
// seen symbols.
//
// path specifies the identifier path to a nested field or interface method.
func (sc *symbolCollector) match(name string, kind protocol.SymbolKind, node ast.Node, path ...*ast.Ident) {
if !node.Pos().IsValid() || !node.End().IsValid() {
return
}
isExported := isExported(name)
if len(path) > 0 {
var nameBuilder strings.Builder
for _, ident := range path {
nameBuilder.WriteString(ident.Name)
nameBuilder.WriteString(".")
if !ident.IsExported() {
isExported = false
}
}
nameBuilder.WriteString(name)
name = nameBuilder.String()
}
// Factors to apply to the match score for the purpose of downranking
// results.
//
// These numbers were crudely calibrated based on trial-and-error using a
// small number of sample queries. Adjust as necessary.
//
// All factors are multiplicative, meaning if more than one applies they are
// multiplied together.
const (
// nonWorkspaceFactor is applied to symbols outside of any active
// workspace. Developers are less likely to want to jump to code that they
// are not actively working on.
nonWorkspaceFactor = 0.5
// nonWorkspaceUnexportedFactor is applied to unexported symbols outside of
// any active workspace. Since one wouldn't usually jump to unexported
// symbols to understand a package API, they are particularly irrelevant.
nonWorkspaceUnexportedFactor = 0.5
// fieldFactor is applied to fields and interface methods. One would
// typically jump to the type definition first, so ranking fields highly
// can be noisy.
fieldFactor = 0.5
)
symbol, score := sc.symbolizer(name, sc.current.pkg, sc.matcher)
// Downrank symbols outside of the workspace.
if !sc.current.isWorkspace {
score *= nonWorkspaceFactor
if !isExported {
score *= nonWorkspaceUnexportedFactor
}
}
// Downrank fields.
if len(path) > 0 {
score *= fieldFactor
}
// Avoid the work below if we know this score will not be sorted into the
// results.
if score <= sc.res[len(sc.res)-1].score {
return
}
rng, err := fileRange(sc.curFile, node.Pos(), node.End())
if err != nil {
return
}
si := symbolInformation{
score: score,
name: name,
symbol: symbol,
container: sc.current.pkg.PkgPath(),
kind: kind,
location: protocol.Location{
URI: protocol.URIFromSpanURI(sc.curFile.URI),
Range: rng,
},
}
insertAt := sort.Search(len(sc.res), func(i int) bool {
return sc.res[i].score < score
})
if insertAt < len(sc.res)-1 {
copy(sc.res[insertAt+1:], sc.res[insertAt:len(sc.res)-1])
}
sc.res[insertAt] = si
}
func fileRange(pgf *ParsedGoFile, start, end token.Pos) (protocol.Range, error) {
s, err := span.FileSpan(pgf.Tok, pgf.Mapper.Converter, start, end)
if err != nil {
return protocol.Range{}, nil
}
return pgf.Mapper.Range(s)
}
// isExported reports if a token is exported. Copied from
// token.IsExported (go1.13+).
//
// TODO: replace usage with token.IsExported once go1.12 is no longer
// supported.
func isExported(name string) bool {
ch, _ := utf8.DecodeRuneInString(name)
return unicode.IsUpper(ch)
}
// pkgView holds information related to a package that we are going to walk.
type pkgView struct {
pkg Package
isWorkspace bool
}
// symbolInformation is a cut-down version of protocol.SymbolInformation that
// allows struct values of this type to be used as map keys.
type symbolInformation struct {
score float64
name string
symbol string
container string
kind protocol.SymbolKind
location protocol.Location
}
// asProtocolSymbolInformation converts s to a protocol.SymbolInformation value.
//
// TODO: work out how to handle tags if/when they are needed.
func (s symbolInformation) asProtocolSymbolInformation() protocol.SymbolInformation {
return protocol.SymbolInformation{
Name: s.symbol,
Kind: s.kind,
Location: s.location,
ContainerName: s.container,
}
}
|