1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package memoize supports memoizing the return values of functions with
// idempotent results that are expensive to compute.
//
// To use this package, build a store and use it to acquire handles with the
// Bind method.
//
package memoize
import (
"context"
"flag"
"fmt"
"reflect"
"sync"
"sync/atomic"
"golang.org/x/tools/internal/xcontext"
)
var (
panicOnDestroyed = flag.Bool("memoize_panic_on_destroyed", false,
"Panic when a destroyed generation is read rather than returning an error. "+
"Panicking may make it easier to debug lifetime errors, especially when "+
"used with GOTRACEBACK=crash to see all running goroutines.")
)
// Store binds keys to functions, returning handles that can be used to access
// the functions results.
type Store struct {
mu sync.Mutex
// handles is the set of values stored.
handles map[interface{}]*Handle
// generations is the set of generations live in this store.
generations map[*Generation]struct{}
}
// Generation creates a new Generation associated with s. Destroy must be
// called on the returned Generation once it is no longer in use. name is
// for debugging purposes only.
func (s *Store) Generation(name string) *Generation {
s.mu.Lock()
defer s.mu.Unlock()
if s.handles == nil {
s.handles = map[interface{}]*Handle{}
s.generations = map[*Generation]struct{}{}
}
g := &Generation{store: s, name: name}
s.generations[g] = struct{}{}
return g
}
// A Generation is a logical point in time of the cache life-cycle. Cache
// entries associated with a Generation will not be removed until the
// Generation is destroyed.
type Generation struct {
// destroyed is 1 after the generation is destroyed. Atomic.
destroyed uint32
store *Store
name string
// wg tracks the reference count of this generation.
wg sync.WaitGroup
}
// Destroy waits for all operations referencing g to complete, then removes
// all references to g from cache entries. Cache entries that no longer
// reference any non-destroyed generation are removed. Destroy must be called
// exactly once for each generation.
func (g *Generation) Destroy() {
g.wg.Wait()
atomic.StoreUint32(&g.destroyed, 1)
g.store.mu.Lock()
defer g.store.mu.Unlock()
for k, e := range g.store.handles {
e.mu.Lock()
if _, ok := e.generations[g]; ok {
delete(e.generations, g) // delete even if it's dead, in case of dangling references to the entry.
if len(e.generations) == 0 {
delete(g.store.handles, k)
e.state = stateDestroyed
if e.cleanup != nil && e.value != nil {
e.cleanup(e.value)
}
}
}
e.mu.Unlock()
}
delete(g.store.generations, g)
}
// Acquire creates a new reference to g, and returns a func to release that
// reference.
func (g *Generation) Acquire(ctx context.Context) func() {
destroyed := atomic.LoadUint32(&g.destroyed)
if ctx.Err() != nil {
return func() {}
}
if destroyed != 0 {
panic("acquire on destroyed generation " + g.name)
}
g.wg.Add(1)
return g.wg.Done
}
// Arg is a marker interface that can be embedded to indicate a type is
// intended for use as a Function argument.
type Arg interface{ memoizeArg() }
// Function is the type for functions that can be memoized.
// The result must be a pointer.
type Function func(ctx context.Context, arg Arg) interface{}
type state int
const (
stateIdle = iota
stateRunning
stateCompleted
stateDestroyed
)
// Handle is returned from a store when a key is bound to a function.
// It is then used to access the results of that function.
//
// A Handle starts out in idle state, waiting for something to demand its
// evaluation. It then transitions into running state. While it's running,
// waiters tracks the number of Get calls waiting for a result, and the done
// channel is used to notify waiters of the next state transition. Once the
// evaluation finishes, value is set, state changes to completed, and done
// is closed, unblocking waiters. Alternatively, as Get calls are cancelled,
// they decrement waiters. If it drops to zero, the inner context is cancelled,
// computation is abandoned, and state resets to idle to start the process over
// again.
type Handle struct {
key interface{}
mu sync.Mutex
// generations is the set of generations in which this handle is valid.
generations map[*Generation]struct{}
state state
// done is set in running state, and closed when exiting it.
done chan struct{}
// cancel is set in running state. It cancels computation.
cancel context.CancelFunc
// waiters is the number of Gets outstanding.
waiters uint
// the function that will be used to populate the value
function Function
// value is set in completed state.
value interface{}
// cleanup, if non-nil, is used to perform any necessary clean-up on values
// produced by function.
cleanup func(interface{})
}
// Bind returns a handle for the given key and function.
//
// Each call to bind will return the same handle if it is already bound. Bind
// will always return a valid handle, creating one if needed. Each key can
// only have one handle at any given time. The value will be held at least
// until the associated generation is destroyed. Bind does not cause the value
// to be generated.
//
// If cleanup is non-nil, it will be called on any non-nil values produced by
// function when they are no longer referenced.
func (g *Generation) Bind(key interface{}, function Function, cleanup func(interface{})) *Handle {
// panic early if the function is nil
// it would panic later anyway, but in a way that was much harder to debug
if function == nil {
panic("the function passed to bind must not be nil")
}
if atomic.LoadUint32(&g.destroyed) != 0 {
panic("operation on destroyed generation " + g.name)
}
g.store.mu.Lock()
defer g.store.mu.Unlock()
h, ok := g.store.handles[key]
if !ok {
h := &Handle{
key: key,
function: function,
generations: map[*Generation]struct{}{g: {}},
cleanup: cleanup,
}
g.store.handles[key] = h
return h
}
h.mu.Lock()
defer h.mu.Unlock()
if _, ok := h.generations[g]; !ok {
h.generations[g] = struct{}{}
}
return h
}
// Stats returns the number of each type of value in the store.
func (s *Store) Stats() map[reflect.Type]int {
s.mu.Lock()
defer s.mu.Unlock()
result := map[reflect.Type]int{}
for k := range s.handles {
result[reflect.TypeOf(k)]++
}
return result
}
// DebugOnlyIterate iterates through all live cache entries and calls f on them.
// It should only be used for debugging purposes.
func (s *Store) DebugOnlyIterate(f func(k, v interface{})) {
s.mu.Lock()
defer s.mu.Unlock()
for k, e := range s.handles {
var v interface{}
e.mu.Lock()
if e.state == stateCompleted {
v = e.value
}
e.mu.Unlock()
if v == nil {
continue
}
f(k, v)
}
}
func (g *Generation) Inherit(hs ...*Handle) {
for _, h := range hs {
if atomic.LoadUint32(&g.destroyed) != 0 {
panic("inherit on destroyed generation " + g.name)
}
h.mu.Lock()
defer h.mu.Unlock()
if h.state == stateDestroyed {
panic(fmt.Sprintf("inheriting destroyed handle %#v (type %T) into generation %v", h.key, h.key, g.name))
}
h.generations[g] = struct{}{}
}
}
// Cached returns the value associated with a handle.
//
// It will never cause the value to be generated.
// It will return the cached value, if present.
func (h *Handle) Cached(g *Generation) interface{} {
h.mu.Lock()
defer h.mu.Unlock()
if _, ok := h.generations[g]; !ok {
return nil
}
if h.state == stateCompleted {
return h.value
}
return nil
}
// Get returns the value associated with a handle.
//
// If the value is not yet ready, the underlying function will be invoked.
// If ctx is cancelled, Get returns nil.
func (h *Handle) Get(ctx context.Context, g *Generation, arg Arg) (interface{}, error) {
release := g.Acquire(ctx)
defer release()
if ctx.Err() != nil {
return nil, ctx.Err()
}
h.mu.Lock()
if _, ok := h.generations[g]; !ok {
h.mu.Unlock()
err := fmt.Errorf("reading key %#v: generation %v is not known", h.key, g.name)
if *panicOnDestroyed && ctx.Err() != nil {
panic(err)
}
return nil, err
}
switch h.state {
case stateIdle:
return h.run(ctx, g, arg)
case stateRunning:
return h.wait(ctx)
case stateCompleted:
defer h.mu.Unlock()
return h.value, nil
case stateDestroyed:
h.mu.Unlock()
err := fmt.Errorf("Get on destroyed entry %#v (type %T) in generation %v", h.key, h.key, g.name)
if *panicOnDestroyed {
panic(err)
}
return nil, err
default:
panic("unknown state")
}
}
// run starts h.function and returns the result. h.mu must be locked.
func (h *Handle) run(ctx context.Context, g *Generation, arg Arg) (interface{}, error) {
childCtx, cancel := context.WithCancel(xcontext.Detach(ctx))
h.cancel = cancel
h.state = stateRunning
h.done = make(chan struct{})
function := h.function // Read under the lock
// Make sure that the generation isn't destroyed while we're running in it.
release := g.Acquire(ctx)
go func() {
defer release()
// Just in case the function does something expensive without checking
// the context, double-check we're still alive.
if childCtx.Err() != nil {
return
}
v := function(childCtx, arg)
if childCtx.Err() != nil {
// It's possible that v was computed despite the context cancellation. In
// this case we should ensure that it is cleaned up.
if h.cleanup != nil && v != nil {
h.cleanup(v)
}
return
}
h.mu.Lock()
defer h.mu.Unlock()
// It's theoretically possible that the handle has been cancelled out
// of the run that started us, and then started running again since we
// checked childCtx above. Even so, that should be harmless, since each
// run should produce the same results.
if h.state != stateRunning {
// v will never be used, so ensure that it is cleaned up.
if h.cleanup != nil && v != nil {
h.cleanup(v)
}
return
}
// At this point v will be cleaned up whenever h is destroyed.
h.value = v
h.function = nil
h.state = stateCompleted
close(h.done)
}()
return h.wait(ctx)
}
// wait waits for the value to be computed, or ctx to be cancelled. h.mu must be locked.
func (h *Handle) wait(ctx context.Context) (interface{}, error) {
h.waiters++
done := h.done
h.mu.Unlock()
select {
case <-done:
h.mu.Lock()
defer h.mu.Unlock()
if h.state == stateCompleted {
return h.value, nil
}
return nil, nil
case <-ctx.Done():
h.mu.Lock()
defer h.mu.Unlock()
h.waiters--
if h.waiters == 0 && h.state == stateRunning {
h.cancel()
close(h.done)
h.state = stateIdle
h.done = nil
h.cancel = nil
}
return nil, ctx.Err()
}
}
|