1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
|
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package checker defines the implementation of the checker commands.
// The same code drives the multi-analysis driver, the single-analysis
// driver that is conventionally provided for convenience along with
// each analysis package, and the test driver.
package checker
import (
"bytes"
"encoding/gob"
"flag"
"fmt"
"go/format"
"go/token"
"go/types"
"log"
"os"
"reflect"
"runtime"
"runtime/pprof"
"runtime/trace"
"sort"
"strings"
"sync"
"time"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/internal/analysisflags"
"golang.org/x/tools/go/packages"
"golang.org/x/tools/internal/analysisinternal"
"golang.org/x/tools/internal/diff"
"golang.org/x/tools/internal/robustio"
)
var (
// Debug is a set of single-letter flags:
//
// f show [f]acts as they are created
// p disable [p]arallel execution of analyzers
// s do additional [s]anity checks on fact types and serialization
// t show [t]iming info (NB: use 'p' flag to avoid GC/scheduler noise)
// v show [v]erbose logging
//
Debug = ""
// Log files for optional performance tracing.
CPUProfile, MemProfile, Trace string
// IncludeTests indicates whether test files should be analyzed too.
IncludeTests = true
// Fix determines whether to apply all suggested fixes.
Fix bool
)
// RegisterFlags registers command-line flags used by the analysis driver.
func RegisterFlags() {
// When adding flags here, remember to update
// the list of suppressed flags in analysisflags.
flag.StringVar(&Debug, "debug", Debug, `debug flags, any subset of "fpstv"`)
flag.StringVar(&CPUProfile, "cpuprofile", "", "write CPU profile to this file")
flag.StringVar(&MemProfile, "memprofile", "", "write memory profile to this file")
flag.StringVar(&Trace, "trace", "", "write trace log to this file")
flag.BoolVar(&IncludeTests, "test", IncludeTests, "indicates whether test files should be analyzed, too")
flag.BoolVar(&Fix, "fix", false, "apply all suggested fixes")
}
// Run loads the packages specified by args using go/packages,
// then applies the specified analyzers to them.
// Analysis flags must already have been set.
// Analyzers must be valid according to [analysis.Validate].
// It provides most of the logic for the main functions of both the
// singlechecker and the multi-analysis commands.
// It returns the appropriate exit code.
func Run(args []string, analyzers []*analysis.Analyzer) (exitcode int) {
if CPUProfile != "" {
f, err := os.Create(CPUProfile)
if err != nil {
log.Fatal(err)
}
if err := pprof.StartCPUProfile(f); err != nil {
log.Fatal(err)
}
// NB: profile won't be written in case of error.
defer pprof.StopCPUProfile()
}
if Trace != "" {
f, err := os.Create(Trace)
if err != nil {
log.Fatal(err)
}
if err := trace.Start(f); err != nil {
log.Fatal(err)
}
// NB: trace log won't be written in case of error.
defer func() {
trace.Stop()
log.Printf("To view the trace, run:\n$ go tool trace view %s", Trace)
}()
}
if MemProfile != "" {
f, err := os.Create(MemProfile)
if err != nil {
log.Fatal(err)
}
// NB: memprofile won't be written in case of error.
defer func() {
runtime.GC() // get up-to-date statistics
if err := pprof.WriteHeapProfile(f); err != nil {
log.Fatalf("Writing memory profile: %v", err)
}
f.Close()
}()
}
// Load the packages.
if dbg('v') {
log.SetPrefix("")
log.SetFlags(log.Lmicroseconds) // display timing
log.Printf("load %s", args)
}
// Optimization: if the selected analyzers don't produce/consume
// facts, we need source only for the initial packages.
allSyntax := needFacts(analyzers)
initial, err := load(args, allSyntax)
if err != nil {
log.Print(err)
return 1
}
pkgsExitCode := 0
// Print package and module errors regardless of RunDespiteErrors.
// Do not exit if there are errors, yet.
if n := packages.PrintErrors(initial); n > 0 {
pkgsExitCode = 1
}
// Run the analyzers. On each package with (transitive)
// errors, we run only the subset of analyzers that are
// marked (and whose transitive requirements are also
// marked) with RunDespiteErrors.
roots := analyze(initial, analyzers)
// Apply fixes.
if Fix {
if err := applyFixes(roots); err != nil {
// Fail when applying fixes failed.
log.Print(err)
return 1
}
}
// Print the results. If !RunDespiteErrors and there
// are errors in the packages, this will have 0 exit
// code. Otherwise, we prefer to return exit code
// indicating diagnostics.
if diagExitCode := printDiagnostics(roots); diagExitCode != 0 {
return diagExitCode // there were diagnostics
}
return pkgsExitCode // package errors but no diagnostics
}
// load loads the initial packages. Returns only top-level loading
// errors. Does not consider errors in packages.
func load(patterns []string, allSyntax bool) ([]*packages.Package, error) {
mode := packages.LoadSyntax
if allSyntax {
mode = packages.LoadAllSyntax
}
mode |= packages.NeedModule
conf := packages.Config{
Mode: mode,
Tests: IncludeTests,
}
initial, err := packages.Load(&conf, patterns...)
if err == nil && len(initial) == 0 {
err = fmt.Errorf("%s matched no packages", strings.Join(patterns, " "))
}
return initial, err
}
// TestAnalyzer applies an analyzer to a set of packages (and their
// dependencies if necessary) and returns the results.
// The analyzer must be valid according to [analysis.Validate].
//
// Facts about pkg are returned in a map keyed by object; package facts
// have a nil key.
//
// This entry point is used only by analysistest.
func TestAnalyzer(a *analysis.Analyzer, pkgs []*packages.Package) []*TestAnalyzerResult {
var results []*TestAnalyzerResult
for _, act := range analyze(pkgs, []*analysis.Analyzer{a}) {
facts := make(map[types.Object][]analysis.Fact)
for key, fact := range act.objectFacts {
if key.obj.Pkg() == act.pass.Pkg {
facts[key.obj] = append(facts[key.obj], fact)
}
}
for key, fact := range act.packageFacts {
if key.pkg == act.pass.Pkg {
facts[nil] = append(facts[nil], fact)
}
}
results = append(results, &TestAnalyzerResult{act.pass, act.diagnostics, facts, act.result, act.err})
}
return results
}
type TestAnalyzerResult struct {
Pass *analysis.Pass
Diagnostics []analysis.Diagnostic
Facts map[types.Object][]analysis.Fact
Result interface{}
Err error
}
func analyze(pkgs []*packages.Package, analyzers []*analysis.Analyzer) []*action {
// Construct the action graph.
if dbg('v') {
log.Printf("building graph of analysis passes")
}
// Each graph node (action) is one unit of analysis.
// Edges express package-to-package (vertical) dependencies,
// and analysis-to-analysis (horizontal) dependencies.
type key struct {
*analysis.Analyzer
*packages.Package
}
actions := make(map[key]*action)
var mkAction func(a *analysis.Analyzer, pkg *packages.Package) *action
mkAction = func(a *analysis.Analyzer, pkg *packages.Package) *action {
k := key{a, pkg}
act, ok := actions[k]
if !ok {
act = &action{a: a, pkg: pkg}
// Add a dependency on each required analyzers.
for _, req := range a.Requires {
act.deps = append(act.deps, mkAction(req, pkg))
}
// An analysis that consumes/produces facts
// must run on the package's dependencies too.
if len(a.FactTypes) > 0 {
paths := make([]string, 0, len(pkg.Imports))
for path := range pkg.Imports {
paths = append(paths, path)
}
sort.Strings(paths) // for determinism
for _, path := range paths {
dep := mkAction(a, pkg.Imports[path])
act.deps = append(act.deps, dep)
}
}
actions[k] = act
}
return act
}
// Build nodes for initial packages.
var roots []*action
for _, a := range analyzers {
for _, pkg := range pkgs {
root := mkAction(a, pkg)
root.isroot = true
roots = append(roots, root)
}
}
// Execute the graph in parallel.
execAll(roots)
return roots
}
func applyFixes(roots []*action) error {
// visit all of the actions and accumulate the suggested edits.
paths := make(map[robustio.FileID]string)
editsByAction := make(map[robustio.FileID]map[*action][]diff.Edit)
visited := make(map[*action]bool)
var apply func(*action) error
var visitAll func(actions []*action) error
visitAll = func(actions []*action) error {
for _, act := range actions {
if !visited[act] {
visited[act] = true
if err := visitAll(act.deps); err != nil {
return err
}
if err := apply(act); err != nil {
return err
}
}
}
return nil
}
apply = func(act *action) error {
editsForTokenFile := make(map[*token.File][]diff.Edit)
for _, diag := range act.diagnostics {
for _, sf := range diag.SuggestedFixes {
for _, edit := range sf.TextEdits {
// Validate the edit.
// Any error here indicates a bug in the analyzer.
start, end := edit.Pos, edit.End
file := act.pkg.Fset.File(start)
if file == nil {
return fmt.Errorf("analysis %q suggests invalid fix: missing file info for pos (%v)",
act.a.Name, start)
}
if !end.IsValid() {
end = start
}
if start > end {
return fmt.Errorf("analysis %q suggests invalid fix: pos (%v) > end (%v)",
act.a.Name, start, end)
}
if eof := token.Pos(file.Base() + file.Size()); end > eof {
return fmt.Errorf("analysis %q suggests invalid fix: end (%v) past end of file (%v)",
act.a.Name, end, eof)
}
edit := diff.Edit{
Start: file.Offset(start),
End: file.Offset(end),
New: string(edit.NewText),
}
editsForTokenFile[file] = append(editsForTokenFile[file], edit)
}
}
}
for f, edits := range editsForTokenFile {
id, _, err := robustio.GetFileID(f.Name())
if err != nil {
return err
}
if _, hasId := paths[id]; !hasId {
paths[id] = f.Name()
editsByAction[id] = make(map[*action][]diff.Edit)
}
editsByAction[id][act] = edits
}
return nil
}
if err := visitAll(roots); err != nil {
return err
}
// Validate and group the edits to each actual file.
editsByPath := make(map[string][]diff.Edit)
for id, actToEdits := range editsByAction {
path := paths[id]
actions := make([]*action, 0, len(actToEdits))
for act := range actToEdits {
actions = append(actions, act)
}
// Does any action create conflicting edits?
for _, act := range actions {
edits := actToEdits[act]
if _, invalid := validateEdits(edits); invalid > 0 {
name, x, y := act.a.Name, edits[invalid-1], edits[invalid]
return diff3Conflict(path, name, name, []diff.Edit{x}, []diff.Edit{y})
}
}
// Does any pair of different actions create edits that conflict?
for j := range actions {
for k := range actions[:j] {
x, y := actions[j], actions[k]
if x.a.Name > y.a.Name {
x, y = y, x
}
xedits, yedits := actToEdits[x], actToEdits[y]
combined := append(xedits, yedits...)
if _, invalid := validateEdits(combined); invalid > 0 {
// TODO: consider applying each action's consistent list of edits entirely,
// and then using a three-way merge (such as GNU diff3) on the resulting
// files to report more precisely the parts that actually conflict.
return diff3Conflict(path, x.a.Name, y.a.Name, xedits, yedits)
}
}
}
var edits []diff.Edit
for act := range actToEdits {
edits = append(edits, actToEdits[act]...)
}
editsByPath[path], _ = validateEdits(edits) // remove duplicates. already validated.
}
// Now we've got a set of valid edits for each file. Apply them.
for path, edits := range editsByPath {
// TODO(adonovan): this should really work on the same
// gulp from the file system that fed the analyzer (see #62292).
contents, err := os.ReadFile(path)
if err != nil {
return err
}
out, err := diff.ApplyBytes(contents, edits)
if err != nil {
return err
}
// Try to format the file.
if formatted, err := format.Source(out); err == nil {
out = formatted
}
if err := os.WriteFile(path, out, 0644); err != nil {
return err
}
}
return nil
}
// validateEdits returns a list of edits that is sorted and
// contains no duplicate edits. Returns the index of some
// overlapping adjacent edits if there is one and <0 if the
// edits are valid.
func validateEdits(edits []diff.Edit) ([]diff.Edit, int) {
if len(edits) == 0 {
return nil, -1
}
equivalent := func(x, y diff.Edit) bool {
return x.Start == y.Start && x.End == y.End && x.New == y.New
}
diff.SortEdits(edits)
unique := []diff.Edit{edits[0]}
invalid := -1
for i := 1; i < len(edits); i++ {
prev, cur := edits[i-1], edits[i]
// We skip over equivalent edits without considering them
// an error. This handles identical edits coming from the
// multiple ways of loading a package into a
// *go/packages.Packages for testing, e.g. packages "p" and "p [p.test]".
if !equivalent(prev, cur) {
unique = append(unique, cur)
if prev.End > cur.Start {
invalid = i
}
}
}
return unique, invalid
}
// diff3Conflict returns an error describing two conflicting sets of
// edits on a file at path.
func diff3Conflict(path string, xlabel, ylabel string, xedits, yedits []diff.Edit) error {
contents, err := os.ReadFile(path)
if err != nil {
return err
}
oldlabel, old := "base", string(contents)
xdiff, err := diff.ToUnified(oldlabel, xlabel, old, xedits, diff.DefaultContextLines)
if err != nil {
return err
}
ydiff, err := diff.ToUnified(oldlabel, ylabel, old, yedits, diff.DefaultContextLines)
if err != nil {
return err
}
return fmt.Errorf("conflicting edits from %s and %s on %s\nfirst edits:\n%s\nsecond edits:\n%s",
xlabel, ylabel, path, xdiff, ydiff)
}
// printDiagnostics prints the diagnostics for the root packages in either
// plain text or JSON format. JSON format also includes errors for any
// dependencies.
//
// It returns the exitcode: in plain mode, 0 for success, 1 for analysis
// errors, and 3 for diagnostics. We avoid 2 since the flag package uses
// it. JSON mode always succeeds at printing errors and diagnostics in a
// structured form to stdout.
func printDiagnostics(roots []*action) (exitcode int) {
// Print the output.
//
// Print diagnostics only for root packages,
// but errors for all packages.
printed := make(map[*action]bool)
var print func(*action)
var visitAll func(actions []*action)
visitAll = func(actions []*action) {
for _, act := range actions {
if !printed[act] {
printed[act] = true
visitAll(act.deps)
print(act)
}
}
}
if analysisflags.JSON {
// JSON output
tree := make(analysisflags.JSONTree)
print = func(act *action) {
var diags []analysis.Diagnostic
if act.isroot {
diags = act.diagnostics
}
tree.Add(act.pkg.Fset, act.pkg.ID, act.a.Name, diags, act.err)
}
visitAll(roots)
tree.Print()
} else {
// plain text output
// De-duplicate diagnostics by position (not token.Pos) to
// avoid double-reporting in source files that belong to
// multiple packages, such as foo and foo.test.
type key struct {
pos token.Position
end token.Position
*analysis.Analyzer
message string
}
seen := make(map[key]bool)
print = func(act *action) {
if act.err != nil {
fmt.Fprintf(os.Stderr, "%s: %v\n", act.a.Name, act.err)
exitcode = 1 // analysis failed, at least partially
return
}
if act.isroot {
for _, diag := range act.diagnostics {
// We don't display a.Name/f.Category
// as most users don't care.
posn := act.pkg.Fset.Position(diag.Pos)
end := act.pkg.Fset.Position(diag.End)
k := key{posn, end, act.a, diag.Message}
if seen[k] {
continue // duplicate
}
seen[k] = true
analysisflags.PrintPlain(act.pkg.Fset, diag)
}
}
}
visitAll(roots)
if exitcode == 0 && len(seen) > 0 {
exitcode = 3 // successfully produced diagnostics
}
}
// Print timing info.
if dbg('t') {
if !dbg('p') {
log.Println("Warning: times are mostly GC/scheduler noise; use -debug=tp to disable parallelism")
}
var all []*action
var total time.Duration
for act := range printed {
all = append(all, act)
total += act.duration
}
sort.Slice(all, func(i, j int) bool {
return all[i].duration > all[j].duration
})
// Print actions accounting for 90% of the total.
var sum time.Duration
for _, act := range all {
fmt.Fprintf(os.Stderr, "%s\t%s\n", act.duration, act)
sum += act.duration
if sum >= total*9/10 {
break
}
}
}
return exitcode
}
// needFacts reports whether any analysis required by the specified set
// needs facts. If so, we must load the entire program from source.
func needFacts(analyzers []*analysis.Analyzer) bool {
seen := make(map[*analysis.Analyzer]bool)
var q []*analysis.Analyzer // for BFS
q = append(q, analyzers...)
for len(q) > 0 {
a := q[0]
q = q[1:]
if !seen[a] {
seen[a] = true
if len(a.FactTypes) > 0 {
return true
}
q = append(q, a.Requires...)
}
}
return false
}
// An action represents one unit of analysis work: the application of
// one analysis to one package. Actions form a DAG, both within a
// package (as different analyzers are applied, either in sequence or
// parallel), and across packages (as dependencies are analyzed).
type action struct {
once sync.Once
a *analysis.Analyzer
pkg *packages.Package
pass *analysis.Pass
isroot bool
deps []*action
objectFacts map[objectFactKey]analysis.Fact
packageFacts map[packageFactKey]analysis.Fact
result interface{}
diagnostics []analysis.Diagnostic
err error
duration time.Duration
}
type objectFactKey struct {
obj types.Object
typ reflect.Type
}
type packageFactKey struct {
pkg *types.Package
typ reflect.Type
}
func (act *action) String() string {
return fmt.Sprintf("%s@%s", act.a, act.pkg)
}
func execAll(actions []*action) {
sequential := dbg('p')
var wg sync.WaitGroup
for _, act := range actions {
wg.Add(1)
work := func(act *action) {
act.exec()
wg.Done()
}
if sequential {
work(act)
} else {
go work(act)
}
}
wg.Wait()
}
func (act *action) exec() { act.once.Do(act.execOnce) }
func (act *action) execOnce() {
// Analyze dependencies.
execAll(act.deps)
// TODO(adonovan): uncomment this during profiling.
// It won't build pre-go1.11 but conditional compilation
// using build tags isn't warranted.
//
// ctx, task := trace.NewTask(context.Background(), "exec")
// trace.Log(ctx, "pass", act.String())
// defer task.End()
// Record time spent in this node but not its dependencies.
// In parallel mode, due to GC/scheduler contention, the
// time is 5x higher than in sequential mode, even with a
// semaphore limiting the number of threads here.
// So use -debug=tp.
if dbg('t') {
t0 := time.Now()
defer func() { act.duration = time.Since(t0) }()
}
// Report an error if any dependency failed.
var failed []string
for _, dep := range act.deps {
if dep.err != nil {
failed = append(failed, dep.String())
}
}
if failed != nil {
sort.Strings(failed)
act.err = fmt.Errorf("failed prerequisites: %s", strings.Join(failed, ", "))
return
}
// Plumb the output values of the dependencies
// into the inputs of this action. Also facts.
inputs := make(map[*analysis.Analyzer]interface{})
act.objectFacts = make(map[objectFactKey]analysis.Fact)
act.packageFacts = make(map[packageFactKey]analysis.Fact)
for _, dep := range act.deps {
if dep.pkg == act.pkg {
// Same package, different analysis (horizontal edge):
// in-memory outputs of prerequisite analyzers
// become inputs to this analysis pass.
inputs[dep.a] = dep.result
} else if dep.a == act.a { // (always true)
// Same analysis, different package (vertical edge):
// serialized facts produced by prerequisite analysis
// become available to this analysis pass.
inheritFacts(act, dep)
}
}
module := &analysis.Module{} // possibly empty (non nil) in go/analysis drivers.
if mod := act.pkg.Module; mod != nil {
module.Path = mod.Path
module.Version = mod.Version
module.GoVersion = mod.GoVersion
}
// Run the analysis.
pass := &analysis.Pass{
Analyzer: act.a,
Fset: act.pkg.Fset,
Files: act.pkg.Syntax,
OtherFiles: act.pkg.OtherFiles,
IgnoredFiles: act.pkg.IgnoredFiles,
Pkg: act.pkg.Types,
TypesInfo: act.pkg.TypesInfo,
TypesSizes: act.pkg.TypesSizes,
TypeErrors: act.pkg.TypeErrors,
Module: module,
ResultOf: inputs,
Report: func(d analysis.Diagnostic) { act.diagnostics = append(act.diagnostics, d) },
ImportObjectFact: act.importObjectFact,
ExportObjectFact: act.exportObjectFact,
ImportPackageFact: act.importPackageFact,
ExportPackageFact: act.exportPackageFact,
AllObjectFacts: act.allObjectFacts,
AllPackageFacts: act.allPackageFacts,
}
pass.ReadFile = analysisinternal.MakeReadFile(pass)
act.pass = pass
var err error
if act.pkg.IllTyped && !pass.Analyzer.RunDespiteErrors {
err = fmt.Errorf("analysis skipped due to errors in package")
} else {
act.result, err = pass.Analyzer.Run(pass)
if err == nil {
if got, want := reflect.TypeOf(act.result), pass.Analyzer.ResultType; got != want {
err = fmt.Errorf(
"internal error: on package %s, analyzer %s returned a result of type %v, but declared ResultType %v",
pass.Pkg.Path(), pass.Analyzer, got, want)
}
}
}
if err == nil { // resolve diagnostic URLs
for i := range act.diagnostics {
if url, uerr := analysisflags.ResolveURL(act.a, act.diagnostics[i]); uerr == nil {
act.diagnostics[i].URL = url
} else {
err = uerr // keep the last error
}
}
}
act.err = err
// disallow calls after Run
pass.ExportObjectFact = nil
pass.ExportPackageFact = nil
}
// inheritFacts populates act.facts with
// those it obtains from its dependency, dep.
func inheritFacts(act, dep *action) {
serialize := dbg('s')
for key, fact := range dep.objectFacts {
// Filter out facts related to objects
// that are irrelevant downstream
// (equivalently: not in the compiler export data).
if !exportedFrom(key.obj, dep.pkg.Types) {
if false {
log.Printf("%v: discarding %T fact from %s for %s: %s", act, fact, dep, key.obj, fact)
}
continue
}
// Optionally serialize/deserialize fact
// to verify that it works across address spaces.
if serialize {
encodedFact, err := codeFact(fact)
if err != nil {
log.Panicf("internal error: encoding of %T fact failed in %v: %v", fact, act, err)
}
fact = encodedFact
}
if false {
log.Printf("%v: inherited %T fact for %s: %s", act, fact, key.obj, fact)
}
act.objectFacts[key] = fact
}
for key, fact := range dep.packageFacts {
// TODO: filter out facts that belong to
// packages not mentioned in the export data
// to prevent side channels.
// Optionally serialize/deserialize fact
// to verify that it works across address spaces
// and is deterministic.
if serialize {
encodedFact, err := codeFact(fact)
if err != nil {
log.Panicf("internal error: encoding of %T fact failed in %v", fact, act)
}
fact = encodedFact
}
if false {
log.Printf("%v: inherited %T fact for %s: %s", act, fact, key.pkg.Path(), fact)
}
act.packageFacts[key] = fact
}
}
// codeFact encodes then decodes a fact,
// just to exercise that logic.
func codeFact(fact analysis.Fact) (analysis.Fact, error) {
// We encode facts one at a time.
// A real modular driver would emit all facts
// into one encoder to improve gob efficiency.
var buf bytes.Buffer
if err := gob.NewEncoder(&buf).Encode(fact); err != nil {
return nil, err
}
// Encode it twice and assert that we get the same bits.
// This helps detect nondeterministic Gob encoding (e.g. of maps).
var buf2 bytes.Buffer
if err := gob.NewEncoder(&buf2).Encode(fact); err != nil {
return nil, err
}
if !bytes.Equal(buf.Bytes(), buf2.Bytes()) {
return nil, fmt.Errorf("encoding of %T fact is nondeterministic", fact)
}
new := reflect.New(reflect.TypeOf(fact).Elem()).Interface().(analysis.Fact)
if err := gob.NewDecoder(&buf).Decode(new); err != nil {
return nil, err
}
return new, nil
}
// exportedFrom reports whether obj may be visible to a package that imports pkg.
// This includes not just the exported members of pkg, but also unexported
// constants, types, fields, and methods, perhaps belonging to other packages,
// that find there way into the API.
// This is an overapproximation of the more accurate approach used by
// gc export data, which walks the type graph, but it's much simpler.
//
// TODO(adonovan): do more accurate filtering by walking the type graph.
func exportedFrom(obj types.Object, pkg *types.Package) bool {
switch obj := obj.(type) {
case *types.Func:
return obj.Exported() && obj.Pkg() == pkg ||
obj.Type().(*types.Signature).Recv() != nil
case *types.Var:
if obj.IsField() {
return true
}
// we can't filter more aggressively than this because we need
// to consider function parameters exported, but have no way
// of telling apart function parameters from local variables.
return obj.Pkg() == pkg
case *types.TypeName, *types.Const:
return true
}
return false // Nil, Builtin, Label, or PkgName
}
// importObjectFact implements Pass.ImportObjectFact.
// Given a non-nil pointer ptr of type *T, where *T satisfies Fact,
// importObjectFact copies the fact value to *ptr.
func (act *action) importObjectFact(obj types.Object, ptr analysis.Fact) bool {
if obj == nil {
panic("nil object")
}
key := objectFactKey{obj, factType(ptr)}
if v, ok := act.objectFacts[key]; ok {
reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem())
return true
}
return false
}
// exportObjectFact implements Pass.ExportObjectFact.
func (act *action) exportObjectFact(obj types.Object, fact analysis.Fact) {
if act.pass.ExportObjectFact == nil {
log.Panicf("%s: Pass.ExportObjectFact(%s, %T) called after Run", act, obj, fact)
}
if obj.Pkg() != act.pkg.Types {
log.Panicf("internal error: in analysis %s of package %s: Fact.Set(%s, %T): can't set facts on objects belonging another package",
act.a, act.pkg, obj, fact)
}
key := objectFactKey{obj, factType(fact)}
act.objectFacts[key] = fact // clobber any existing entry
if dbg('f') {
objstr := types.ObjectString(obj, (*types.Package).Name)
fmt.Fprintf(os.Stderr, "%s: object %s has fact %s\n",
act.pkg.Fset.Position(obj.Pos()), objstr, fact)
}
}
// allObjectFacts implements Pass.AllObjectFacts.
func (act *action) allObjectFacts() []analysis.ObjectFact {
facts := make([]analysis.ObjectFact, 0, len(act.objectFacts))
for k := range act.objectFacts {
facts = append(facts, analysis.ObjectFact{Object: k.obj, Fact: act.objectFacts[k]})
}
return facts
}
// importPackageFact implements Pass.ImportPackageFact.
// Given a non-nil pointer ptr of type *T, where *T satisfies Fact,
// fact copies the fact value to *ptr.
func (act *action) importPackageFact(pkg *types.Package, ptr analysis.Fact) bool {
if pkg == nil {
panic("nil package")
}
key := packageFactKey{pkg, factType(ptr)}
if v, ok := act.packageFacts[key]; ok {
reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem())
return true
}
return false
}
// exportPackageFact implements Pass.ExportPackageFact.
func (act *action) exportPackageFact(fact analysis.Fact) {
if act.pass.ExportPackageFact == nil {
log.Panicf("%s: Pass.ExportPackageFact(%T) called after Run", act, fact)
}
key := packageFactKey{act.pass.Pkg, factType(fact)}
act.packageFacts[key] = fact // clobber any existing entry
if dbg('f') {
fmt.Fprintf(os.Stderr, "%s: package %s has fact %s\n",
act.pkg.Fset.Position(act.pass.Files[0].Pos()), act.pass.Pkg.Path(), fact)
}
}
func factType(fact analysis.Fact) reflect.Type {
t := reflect.TypeOf(fact)
if t.Kind() != reflect.Ptr {
log.Fatalf("invalid Fact type: got %T, want pointer", fact)
}
return t
}
// allPackageFacts implements Pass.AllPackageFacts.
func (act *action) allPackageFacts() []analysis.PackageFact {
facts := make([]analysis.PackageFact, 0, len(act.packageFacts))
for k := range act.packageFacts {
facts = append(facts, analysis.PackageFact{Package: k.pkg, Fact: act.packageFacts[k]})
}
return facts
}
func dbg(b byte) bool { return strings.IndexByte(Debug, b) >= 0 }
|