1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
|
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vta
import (
"fmt"
"go/token"
"go/types"
"golang.org/x/tools/go/ssa"
"golang.org/x/tools/go/types/typeutil"
"golang.org/x/tools/internal/aliases"
"golang.org/x/tools/internal/typeparams"
)
// node interface for VTA nodes.
type node interface {
Type() types.Type
String() string
}
// constant node for VTA.
type constant struct {
typ types.Type
}
func (c constant) Type() types.Type {
return c.typ
}
func (c constant) String() string {
return fmt.Sprintf("Constant(%v)", c.Type())
}
// pointer node for VTA.
type pointer struct {
typ *types.Pointer
}
func (p pointer) Type() types.Type {
return p.typ
}
func (p pointer) String() string {
return fmt.Sprintf("Pointer(%v)", p.Type())
}
// mapKey node for VTA, modeling reachable map key types.
type mapKey struct {
typ types.Type
}
func (mk mapKey) Type() types.Type {
return mk.typ
}
func (mk mapKey) String() string {
return fmt.Sprintf("MapKey(%v)", mk.Type())
}
// mapValue node for VTA, modeling reachable map value types.
type mapValue struct {
typ types.Type
}
func (mv mapValue) Type() types.Type {
return mv.typ
}
func (mv mapValue) String() string {
return fmt.Sprintf("MapValue(%v)", mv.Type())
}
// sliceElem node for VTA, modeling reachable slice and array element types.
type sliceElem struct {
typ types.Type
}
func (s sliceElem) Type() types.Type {
return s.typ
}
func (s sliceElem) String() string {
return fmt.Sprintf("Slice([]%v)", s.Type())
}
// channelElem node for VTA, modeling reachable channel element types.
type channelElem struct {
typ types.Type
}
func (c channelElem) Type() types.Type {
return c.typ
}
func (c channelElem) String() string {
return fmt.Sprintf("Channel(chan %v)", c.Type())
}
// field node for VTA.
type field struct {
StructType types.Type
index int // index of the field in the struct
}
func (f field) Type() types.Type {
s := typeparams.CoreType(f.StructType).(*types.Struct)
return s.Field(f.index).Type()
}
func (f field) String() string {
s := typeparams.CoreType(f.StructType).(*types.Struct)
return fmt.Sprintf("Field(%v:%s)", f.StructType, s.Field(f.index).Name())
}
// global node for VTA.
type global struct {
val *ssa.Global
}
func (g global) Type() types.Type {
return g.val.Type()
}
func (g global) String() string {
return fmt.Sprintf("Global(%s)", g.val.Name())
}
// local node for VTA modeling local variables
// and function/method parameters.
type local struct {
val ssa.Value
}
func (l local) Type() types.Type {
return l.val.Type()
}
func (l local) String() string {
return fmt.Sprintf("Local(%s)", l.val.Name())
}
// indexedLocal node for VTA node. Models indexed locals
// related to the ssa extract instructions.
type indexedLocal struct {
val ssa.Value
index int
typ types.Type
}
func (i indexedLocal) Type() types.Type {
return i.typ
}
func (i indexedLocal) String() string {
return fmt.Sprintf("Local(%s[%d])", i.val.Name(), i.index)
}
// function node for VTA.
type function struct {
f *ssa.Function
}
func (f function) Type() types.Type {
return f.f.Type()
}
func (f function) String() string {
return fmt.Sprintf("Function(%s)", f.f.Name())
}
// resultVar represents the result
// variable of a function, whether
// named or not.
type resultVar struct {
f *ssa.Function
index int // valid index into result var tuple
}
func (o resultVar) Type() types.Type {
return o.f.Signature.Results().At(o.index).Type()
}
func (o resultVar) String() string {
v := o.f.Signature.Results().At(o.index)
if n := v.Name(); n != "" {
return fmt.Sprintf("Return(%s[%s])", o.f.Name(), n)
}
return fmt.Sprintf("Return(%s[%d])", o.f.Name(), o.index)
}
// nestedPtrInterface node represents all references and dereferences
// of locals and globals that have a nested pointer to interface type.
// We merge such constructs into a single node for simplicity and without
// much precision sacrifice as such variables are rare in practice. Both
// a and b would be represented as the same PtrInterface(I) node in:
//
// type I interface
// var a ***I
// var b **I
type nestedPtrInterface struct {
typ types.Type
}
func (l nestedPtrInterface) Type() types.Type {
return l.typ
}
func (l nestedPtrInterface) String() string {
return fmt.Sprintf("PtrInterface(%v)", l.typ)
}
// nestedPtrFunction node represents all references and dereferences of locals
// and globals that have a nested pointer to function type. We merge such
// constructs into a single node for simplicity and without much precision
// sacrifice as such variables are rare in practice. Both a and b would be
// represented as the same PtrFunction(func()) node in:
//
// var a *func()
// var b **func()
type nestedPtrFunction struct {
typ types.Type
}
func (p nestedPtrFunction) Type() types.Type {
return p.typ
}
func (p nestedPtrFunction) String() string {
return fmt.Sprintf("PtrFunction(%v)", p.typ)
}
// panicArg models types of all arguments passed to panic.
type panicArg struct{}
func (p panicArg) Type() types.Type {
return nil
}
func (p panicArg) String() string {
return "Panic"
}
// recoverReturn models types of all return values of recover().
type recoverReturn struct{}
func (r recoverReturn) Type() types.Type {
return nil
}
func (r recoverReturn) String() string {
return "Recover"
}
type empty = struct{}
// vtaGraph remembers for each VTA node the set of its successors.
// Tailored for VTA, hence does not support singleton (sub)graphs.
type vtaGraph map[node]map[node]empty
// addEdge adds an edge x->y to the graph.
func (g vtaGraph) addEdge(x, y node) {
succs, ok := g[x]
if !ok {
succs = make(map[node]empty)
g[x] = succs
}
succs[y] = empty{}
}
// typePropGraph builds a VTA graph for a set of `funcs` and initial
// `callgraph` needed to establish interprocedural edges. Returns the
// graph and a map for unique type representatives.
func typePropGraph(funcs map[*ssa.Function]bool, callees calleesFunc) (vtaGraph, *typeutil.Map) {
b := builder{graph: make(vtaGraph), callees: callees}
b.visit(funcs)
return b.graph, &b.canon
}
// Data structure responsible for linearly traversing the
// code and building a VTA graph.
type builder struct {
graph vtaGraph
callees calleesFunc // initial call graph for creating flows at unresolved call sites.
// Specialized type map for canonicalization of types.Type.
// Semantically equivalent types can have different implementations,
// i.e., they are different pointer values. The map allows us to
// have one unique representative. The keys are fixed and from the
// client perspective they are types. The values in our case are
// types too, in particular type representatives. Each value is a
// pointer so this map is not expected to take much memory.
canon typeutil.Map
}
func (b *builder) visit(funcs map[*ssa.Function]bool) {
// Add the fixed edge Panic -> Recover
b.graph.addEdge(panicArg{}, recoverReturn{})
for f, in := range funcs {
if in {
b.fun(f)
}
}
}
func (b *builder) fun(f *ssa.Function) {
for _, bl := range f.Blocks {
for _, instr := range bl.Instrs {
b.instr(instr)
}
}
}
func (b *builder) instr(instr ssa.Instruction) {
switch i := instr.(type) {
case *ssa.Store:
b.addInFlowAliasEdges(b.nodeFromVal(i.Addr), b.nodeFromVal(i.Val))
case *ssa.MakeInterface:
b.addInFlowEdge(b.nodeFromVal(i.X), b.nodeFromVal(i))
case *ssa.MakeClosure:
b.closure(i)
case *ssa.UnOp:
b.unop(i)
case *ssa.Phi:
b.phi(i)
case *ssa.ChangeInterface:
// Although in change interface a := A(b) command a and b are
// the same object, the only interesting flow happens when A
// is an interface. We create flow b -> a, but omit a -> b.
// The latter flow is not needed: if a gets assigned concrete
// type later on, that cannot be propagated back to b as b
// is a separate variable. The a -> b flow can happen when
// A is a pointer to interface, but then the command is of
// type ChangeType, handled below.
b.addInFlowEdge(b.nodeFromVal(i.X), b.nodeFromVal(i))
case *ssa.ChangeType:
// change type command a := A(b) results in a and b being the
// same value. For concrete type A, there is no interesting flow.
//
// When A is an interface, most interface casts are handled
// by the ChangeInterface instruction. The relevant case here is
// when converting a pointer to an interface type. This can happen
// when the underlying interfaces have the same method set.
//
// type I interface{ foo() }
// type J interface{ foo() }
// var b *I
// a := (*J)(b)
//
// When this happens we add flows between a <--> b.
b.addInFlowAliasEdges(b.nodeFromVal(i), b.nodeFromVal(i.X))
case *ssa.TypeAssert:
b.tassert(i)
case *ssa.Extract:
b.extract(i)
case *ssa.Field:
b.field(i)
case *ssa.FieldAddr:
b.fieldAddr(i)
case *ssa.Send:
b.send(i)
case *ssa.Select:
b.selekt(i)
case *ssa.Index:
b.index(i)
case *ssa.IndexAddr:
b.indexAddr(i)
case *ssa.Lookup:
b.lookup(i)
case *ssa.MapUpdate:
b.mapUpdate(i)
case *ssa.Next:
b.next(i)
case ssa.CallInstruction:
b.call(i)
case *ssa.Panic:
b.panic(i)
case *ssa.Return:
b.rtrn(i)
case *ssa.MakeChan, *ssa.MakeMap, *ssa.MakeSlice, *ssa.BinOp,
*ssa.Alloc, *ssa.DebugRef, *ssa.Convert, *ssa.Jump, *ssa.If,
*ssa.Slice, *ssa.SliceToArrayPointer, *ssa.Range, *ssa.RunDefers:
// No interesting flow here.
// Notes on individual instructions:
// SliceToArrayPointer: t1 = slice to array pointer *[4]T <- []T (t0)
// No interesting flow as sliceArrayElem(t1) == sliceArrayElem(t0).
return
case *ssa.MultiConvert:
b.multiconvert(i)
default:
panic(fmt.Sprintf("unsupported instruction %v\n", instr))
}
}
func (b *builder) unop(u *ssa.UnOp) {
switch u.Op {
case token.MUL:
// Multiplication operator * is used here as a dereference operator.
b.addInFlowAliasEdges(b.nodeFromVal(u), b.nodeFromVal(u.X))
case token.ARROW:
t := typeparams.CoreType(u.X.Type()).(*types.Chan).Elem()
b.addInFlowAliasEdges(b.nodeFromVal(u), channelElem{typ: t})
default:
// There is no interesting type flow otherwise.
}
}
func (b *builder) phi(p *ssa.Phi) {
for _, edge := range p.Edges {
b.addInFlowAliasEdges(b.nodeFromVal(p), b.nodeFromVal(edge))
}
}
func (b *builder) tassert(a *ssa.TypeAssert) {
if !a.CommaOk {
b.addInFlowEdge(b.nodeFromVal(a.X), b.nodeFromVal(a))
return
}
// The case where a is <a.AssertedType, bool> register so there
// is a flow from a.X to a[0]. Here, a[0] is represented as an
// indexedLocal: an entry into local tuple register a at index 0.
tup := a.Type().(*types.Tuple)
t := tup.At(0).Type()
local := indexedLocal{val: a, typ: t, index: 0}
b.addInFlowEdge(b.nodeFromVal(a.X), local)
}
// extract instruction t1 := t2[i] generates flows between t2[i]
// and t1 where the source is indexed local representing a value
// from tuple register t2 at index i and the target is t1.
func (b *builder) extract(e *ssa.Extract) {
tup := e.Tuple.Type().(*types.Tuple)
t := tup.At(e.Index).Type()
local := indexedLocal{val: e.Tuple, typ: t, index: e.Index}
b.addInFlowAliasEdges(b.nodeFromVal(e), local)
}
func (b *builder) field(f *ssa.Field) {
fnode := field{StructType: f.X.Type(), index: f.Field}
b.addInFlowEdge(fnode, b.nodeFromVal(f))
}
func (b *builder) fieldAddr(f *ssa.FieldAddr) {
t := typeparams.CoreType(f.X.Type()).(*types.Pointer).Elem()
// Since we are getting pointer to a field, make a bidirectional edge.
fnode := field{StructType: t, index: f.Field}
b.addInFlowEdge(fnode, b.nodeFromVal(f))
b.addInFlowEdge(b.nodeFromVal(f), fnode)
}
func (b *builder) send(s *ssa.Send) {
t := typeparams.CoreType(s.Chan.Type()).(*types.Chan).Elem()
b.addInFlowAliasEdges(channelElem{typ: t}, b.nodeFromVal(s.X))
}
// selekt generates flows for select statement
//
// a = select blocking/nonblocking [c_1 <- t_1, c_2 <- t_2, ..., <- o_1, <- o_2, ...]
//
// between receiving channel registers c_i and corresponding input register t_i. Further,
// flows are generated between o_i and a[2 + i]. Note that a is a tuple register of type
// <int, bool, r_1, r_2, ...> where the type of r_i is the element type of channel o_i.
func (b *builder) selekt(s *ssa.Select) {
recvIndex := 0
for _, state := range s.States {
t := typeparams.CoreType(state.Chan.Type()).(*types.Chan).Elem()
if state.Dir == types.SendOnly {
b.addInFlowAliasEdges(channelElem{typ: t}, b.nodeFromVal(state.Send))
} else {
// state.Dir == RecvOnly by definition of select instructions.
tupEntry := indexedLocal{val: s, typ: t, index: 2 + recvIndex}
b.addInFlowAliasEdges(tupEntry, channelElem{typ: t})
recvIndex++
}
}
}
// index instruction a := b[c] on slices creates flows between a and
// SliceElem(t) flow where t is an interface type of c. Arrays and
// slice elements are both modeled as SliceElem.
func (b *builder) index(i *ssa.Index) {
et := sliceArrayElem(i.X.Type())
b.addInFlowAliasEdges(b.nodeFromVal(i), sliceElem{typ: et})
}
// indexAddr instruction a := &b[c] fetches address of a index
// into the field so we create bidirectional flow a <-> SliceElem(t)
// where t is an interface type of c. Arrays and slice elements are
// both modeled as SliceElem.
func (b *builder) indexAddr(i *ssa.IndexAddr) {
et := sliceArrayElem(i.X.Type())
b.addInFlowEdge(sliceElem{typ: et}, b.nodeFromVal(i))
b.addInFlowEdge(b.nodeFromVal(i), sliceElem{typ: et})
}
// lookup handles map query commands a := m[b] where m is of type
// map[...]V and V is an interface. It creates flows between `a`
// and MapValue(V).
func (b *builder) lookup(l *ssa.Lookup) {
t, ok := l.X.Type().Underlying().(*types.Map)
if !ok {
// No interesting flows for string lookups.
return
}
if !l.CommaOk {
b.addInFlowAliasEdges(b.nodeFromVal(l), mapValue{typ: t.Elem()})
} else {
i := indexedLocal{val: l, typ: t.Elem(), index: 0}
b.addInFlowAliasEdges(i, mapValue{typ: t.Elem()})
}
}
// mapUpdate handles map update commands m[b] = a where m is of type
// map[K]V and K and V are interfaces. It creates flows between `a`
// and MapValue(V) as well as between MapKey(K) and `b`.
func (b *builder) mapUpdate(u *ssa.MapUpdate) {
t, ok := u.Map.Type().Underlying().(*types.Map)
if !ok {
// No interesting flows for string updates.
return
}
b.addInFlowAliasEdges(mapKey{typ: t.Key()}, b.nodeFromVal(u.Key))
b.addInFlowAliasEdges(mapValue{typ: t.Elem()}, b.nodeFromVal(u.Value))
}
// next instruction <ok, key, value> := next r, where r
// is a range over map or string generates flow between
// key and MapKey as well value and MapValue nodes.
func (b *builder) next(n *ssa.Next) {
if n.IsString {
return
}
tup := n.Type().(*types.Tuple)
kt := tup.At(1).Type()
vt := tup.At(2).Type()
b.addInFlowAliasEdges(indexedLocal{val: n, typ: kt, index: 1}, mapKey{typ: kt})
b.addInFlowAliasEdges(indexedLocal{val: n, typ: vt, index: 2}, mapValue{typ: vt})
}
// addInFlowAliasEdges adds an edge r -> l to b.graph if l is a node that can
// have an inflow, i.e., a node that represents an interface or an unresolved
// function value. Similarly for the edge l -> r with an additional condition
// of that l and r can potentially alias.
func (b *builder) addInFlowAliasEdges(l, r node) {
b.addInFlowEdge(r, l)
if canAlias(l, r) {
b.addInFlowEdge(l, r)
}
}
func (b *builder) closure(c *ssa.MakeClosure) {
f := c.Fn.(*ssa.Function)
b.addInFlowEdge(function{f: f}, b.nodeFromVal(c))
for i, fv := range f.FreeVars {
b.addInFlowAliasEdges(b.nodeFromVal(fv), b.nodeFromVal(c.Bindings[i]))
}
}
// panic creates a flow from arguments to panic instructions to return
// registers of all recover statements in the program. Introduces a
// global panic node Panic and
// 1. for every panic statement p: add p -> Panic
// 2. for every recover statement r: add Panic -> r (handled in call)
//
// TODO(zpavlinovic): improve precision by explicitly modeling how panic
// values flow from callees to callers and into deferred recover instructions.
func (b *builder) panic(p *ssa.Panic) {
// Panics often have, for instance, strings as arguments which do
// not create interesting flows.
if !canHaveMethods(p.X.Type()) {
return
}
b.addInFlowEdge(b.nodeFromVal(p.X), panicArg{})
}
// call adds flows between arguments/parameters and return values/registers
// for both static and dynamic calls, as well as go and defer calls.
func (b *builder) call(c ssa.CallInstruction) {
// When c is r := recover() call register instruction, we add Recover -> r.
if bf, ok := c.Common().Value.(*ssa.Builtin); ok && bf.Name() == "recover" {
if v, ok := c.(ssa.Value); ok {
b.addInFlowEdge(recoverReturn{}, b.nodeFromVal(v))
}
return
}
siteCallees(c, b.callees)(func(f *ssa.Function) bool {
addArgumentFlows(b, c, f)
site, ok := c.(ssa.Value)
if !ok {
return true // go or defer
}
results := f.Signature.Results()
if results.Len() == 1 {
// When there is only one return value, the destination register does not
// have a tuple type.
b.addInFlowEdge(resultVar{f: f, index: 0}, b.nodeFromVal(site))
} else {
tup := site.Type().(*types.Tuple)
for i := 0; i < results.Len(); i++ {
local := indexedLocal{val: site, typ: tup.At(i).Type(), index: i}
b.addInFlowEdge(resultVar{f: f, index: i}, local)
}
}
return true
})
}
func addArgumentFlows(b *builder, c ssa.CallInstruction, f *ssa.Function) {
// When f has no paremeters (including receiver), there is no type
// flow here. Also, f's body and parameters might be missing, such
// as when vta is used within the golang.org/x/tools/go/analysis
// framework (see github.com/golang/go/issues/50670).
if len(f.Params) == 0 {
return
}
cc := c.Common()
if cc.Method != nil {
// In principle we don't add interprocedural flows for receiver
// objects. At a call site, the receiver object is interface
// while the callee object is concrete. The flow from interface
// to concrete type in general does not make sense. The exception
// is when the concrete type is a named function type (see #57756).
//
// The flow other way around would bake in information from the
// initial call graph.
if isFunction(f.Params[0].Type()) {
b.addInFlowEdge(b.nodeFromVal(cc.Value), b.nodeFromVal(f.Params[0]))
}
}
offset := 0
if cc.Method != nil {
offset = 1
}
for i, v := range cc.Args {
// Parameters of f might not be available, as in the case
// when vta is used within the golang.org/x/tools/go/analysis
// framework (see github.com/golang/go/issues/50670).
//
// TODO: investigate other cases of missing body and parameters
if len(f.Params) <= i+offset {
return
}
b.addInFlowAliasEdges(b.nodeFromVal(f.Params[i+offset]), b.nodeFromVal(v))
}
}
// rtrn creates flow edges from the operands of the return
// statement to the result variables of the enclosing function.
func (b *builder) rtrn(r *ssa.Return) {
for i, rs := range r.Results {
b.addInFlowEdge(b.nodeFromVal(rs), resultVar{f: r.Parent(), index: i})
}
}
func (b *builder) multiconvert(c *ssa.MultiConvert) {
// TODO(zpavlinovic): decide what to do on MultiConvert long term.
// TODO(zpavlinovic): add unit tests.
typeSetOf := func(typ types.Type) []*types.Term {
// This is a adaptation of x/exp/typeparams.NormalTerms which x/tools cannot depend on.
var terms []*types.Term
var err error
switch typ := aliases.Unalias(typ).(type) {
case *types.TypeParam:
terms, err = typeparams.StructuralTerms(typ)
case *types.Union:
terms, err = typeparams.UnionTermSet(typ)
case *types.Interface:
terms, err = typeparams.InterfaceTermSet(typ)
default:
// Common case.
// Specializing the len=1 case to avoid a slice
// had no measurable space/time benefit.
terms = []*types.Term{types.NewTerm(false, typ)}
}
if err != nil {
return nil
}
return terms
}
// isValuePreserving returns true if a conversion from ut_src to
// ut_dst is value-preserving, i.e. just a change of type.
// Precondition: neither argument is a named or alias type.
isValuePreserving := func(ut_src, ut_dst types.Type) bool {
// Identical underlying types?
if types.IdenticalIgnoreTags(ut_dst, ut_src) {
return true
}
switch ut_dst.(type) {
case *types.Chan:
// Conversion between channel types?
_, ok := ut_src.(*types.Chan)
return ok
case *types.Pointer:
// Conversion between pointers with identical base types?
_, ok := ut_src.(*types.Pointer)
return ok
}
return false
}
dst_terms := typeSetOf(c.Type())
src_terms := typeSetOf(c.X.Type())
for _, s := range src_terms {
us := s.Type().Underlying()
for _, d := range dst_terms {
ud := d.Type().Underlying()
if isValuePreserving(us, ud) {
// This is equivalent to a ChangeType.
b.addInFlowAliasEdges(b.nodeFromVal(c), b.nodeFromVal(c.X))
return
}
// This is equivalent to either: SliceToArrayPointer,,
// SliceToArrayPointer+Deref, Size 0 Array constant, or a Convert.
}
}
}
// addInFlowEdge adds s -> d to g if d is node that can have an inflow, i.e., a node
// that represents an interface or an unresolved function value. Otherwise, there
// is no interesting type flow so the edge is omitted.
func (b *builder) addInFlowEdge(s, d node) {
if hasInFlow(d) {
b.graph.addEdge(b.representative(s), b.representative(d))
}
}
// Creates const, pointer, global, func, and local nodes based on register instructions.
func (b *builder) nodeFromVal(val ssa.Value) node {
if p, ok := aliases.Unalias(val.Type()).(*types.Pointer); ok && !types.IsInterface(p.Elem()) && !isFunction(p.Elem()) {
// Nested pointer to interfaces are modeled as a special
// nestedPtrInterface node.
if i := interfaceUnderPtr(p.Elem()); i != nil {
return nestedPtrInterface{typ: i}
}
// The same goes for nested function types.
if f := functionUnderPtr(p.Elem()); f != nil {
return nestedPtrFunction{typ: f}
}
return pointer{typ: p}
}
switch v := val.(type) {
case *ssa.Const:
return constant{typ: val.Type()}
case *ssa.Global:
return global{val: v}
case *ssa.Function:
return function{f: v}
case *ssa.Parameter, *ssa.FreeVar, ssa.Instruction:
// ssa.Param, ssa.FreeVar, and a specific set of "register" instructions,
// satisifying the ssa.Value interface, can serve as local variables.
return local{val: v}
default:
panic(fmt.Errorf("unsupported value %v in node creation", val))
}
}
// representative returns a unique representative for node `n`. Since
// semantically equivalent types can have different implementations,
// this method guarantees the same implementation is always used.
func (b *builder) representative(n node) node {
if n.Type() == nil {
// panicArg and recoverReturn do not have
// types and are unique by definition.
return n
}
t := canonicalize(n.Type(), &b.canon)
switch i := n.(type) {
case constant:
return constant{typ: t}
case pointer:
return pointer{typ: t.(*types.Pointer)}
case sliceElem:
return sliceElem{typ: t}
case mapKey:
return mapKey{typ: t}
case mapValue:
return mapValue{typ: t}
case channelElem:
return channelElem{typ: t}
case nestedPtrInterface:
return nestedPtrInterface{typ: t}
case nestedPtrFunction:
return nestedPtrFunction{typ: t}
case field:
return field{StructType: canonicalize(i.StructType, &b.canon), index: i.index}
case indexedLocal:
return indexedLocal{typ: t, val: i.val, index: i.index}
case local, global, panicArg, recoverReturn, function, resultVar:
return n
default:
panic(fmt.Errorf("canonicalizing unrecognized node %v", n))
}
}
// canonicalize returns a type representative of `t` unique subject
// to type map `canon`.
func canonicalize(t types.Type, canon *typeutil.Map) types.Type {
rep := canon.At(t)
if rep != nil {
return rep.(types.Type)
}
canon.Set(t, t)
return t
}
|