1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"go/types"
"golang.org/x/tools/go/types/typeutil"
"golang.org/x/tools/internal/aliases"
)
// subster defines a type substitution operation of a set of type parameters
// to type parameter free replacement types. Substitution is done within
// the context of a package-level function instantiation. *Named types
// declared in the function are unique to the instantiation.
//
// For example, given a parameterized function F
//
// func F[S, T any]() any {
// type X struct{ s S; next *X }
// var p *X
// return p
// }
//
// calling the instantiation F[string, int]() returns an interface
// value (*X[string,int], nil) where the underlying value of
// X[string,int] is a struct{s string; next *X[string,int]}.
//
// A nil *subster is a valid, empty substitution map. It always acts as
// the identity function. This allows for treating parameterized and
// non-parameterized functions identically while compiling to ssa.
//
// Not concurrency-safe.
//
// Note: Some may find it helpful to think through some of the most
// complex substitution cases using lambda calculus inspired notation.
// subst.typ() solves evaluating a type expression E
// within the body of a function Fn[m] with the type parameters m
// once we have applied the type arguments N.
// We can succinctly write this as a function application:
//
// ((λm. E) N)
//
// go/types does not provide this interface directly.
// So what subster provides is a type substitution operation
//
// E[m:=N]
type subster struct {
replacements map[*types.TypeParam]types.Type // values should contain no type params
cache map[types.Type]types.Type // cache of subst results
origin *types.Func // types.Objects declared within this origin function are unique within this context
ctxt *types.Context // speeds up repeated instantiations
uniqueness typeutil.Map // determines the uniqueness of the instantiations within the function
// TODO(taking): consider adding Pos
}
// Returns a subster that replaces tparams[i] with targs[i]. Uses ctxt as a cache.
// targs should not contain any types in tparams.
// fn is the generic function for which we are substituting.
func makeSubster(ctxt *types.Context, fn *types.Func, tparams *types.TypeParamList, targs []types.Type, debug bool) *subster {
assert(tparams.Len() == len(targs), "makeSubster argument count must match")
subst := &subster{
replacements: make(map[*types.TypeParam]types.Type, tparams.Len()),
cache: make(map[types.Type]types.Type),
origin: fn.Origin(),
ctxt: ctxt,
}
for i := 0; i < tparams.Len(); i++ {
subst.replacements[tparams.At(i)] = targs[i]
}
return subst
}
// typ returns the type of t with the type parameter tparams[i] substituted
// for the type targs[i] where subst was created using tparams and targs.
func (subst *subster) typ(t types.Type) (res types.Type) {
if subst == nil {
return t // A nil subst is type preserving.
}
if r, ok := subst.cache[t]; ok {
return r
}
defer func() {
subst.cache[t] = res
}()
switch t := t.(type) {
case *types.TypeParam:
if r := subst.replacements[t]; r != nil {
return r
}
return t
case *types.Basic:
return t
case *types.Array:
if r := subst.typ(t.Elem()); r != t.Elem() {
return types.NewArray(r, t.Len())
}
return t
case *types.Slice:
if r := subst.typ(t.Elem()); r != t.Elem() {
return types.NewSlice(r)
}
return t
case *types.Pointer:
if r := subst.typ(t.Elem()); r != t.Elem() {
return types.NewPointer(r)
}
return t
case *types.Tuple:
return subst.tuple(t)
case *types.Struct:
return subst.struct_(t)
case *types.Map:
key := subst.typ(t.Key())
elem := subst.typ(t.Elem())
if key != t.Key() || elem != t.Elem() {
return types.NewMap(key, elem)
}
return t
case *types.Chan:
if elem := subst.typ(t.Elem()); elem != t.Elem() {
return types.NewChan(t.Dir(), elem)
}
return t
case *types.Signature:
return subst.signature(t)
case *types.Union:
return subst.union(t)
case *types.Interface:
return subst.interface_(t)
case *aliases.Alias:
return subst.alias(t)
case *types.Named:
return subst.named(t)
case *opaqueType:
return t // opaque types are never substituted
default:
panic("unreachable")
}
}
// types returns the result of {subst.typ(ts[i])}.
func (subst *subster) types(ts []types.Type) []types.Type {
res := make([]types.Type, len(ts))
for i := range ts {
res[i] = subst.typ(ts[i])
}
return res
}
func (subst *subster) tuple(t *types.Tuple) *types.Tuple {
if t != nil {
if vars := subst.varlist(t); vars != nil {
return types.NewTuple(vars...)
}
}
return t
}
type varlist interface {
At(i int) *types.Var
Len() int
}
// fieldlist is an adapter for structs for the varlist interface.
type fieldlist struct {
str *types.Struct
}
func (fl fieldlist) At(i int) *types.Var { return fl.str.Field(i) }
func (fl fieldlist) Len() int { return fl.str.NumFields() }
func (subst *subster) struct_(t *types.Struct) *types.Struct {
if t != nil {
if fields := subst.varlist(fieldlist{t}); fields != nil {
tags := make([]string, t.NumFields())
for i, n := 0, t.NumFields(); i < n; i++ {
tags[i] = t.Tag(i)
}
return types.NewStruct(fields, tags)
}
}
return t
}
// varlist returns subst(in[i]) or return nils if subst(v[i]) == v[i] for all i.
func (subst *subster) varlist(in varlist) []*types.Var {
var out []*types.Var // nil => no updates
for i, n := 0, in.Len(); i < n; i++ {
v := in.At(i)
w := subst.var_(v)
if v != w && out == nil {
out = make([]*types.Var, n)
for j := 0; j < i; j++ {
out[j] = in.At(j)
}
}
if out != nil {
out[i] = w
}
}
return out
}
func (subst *subster) var_(v *types.Var) *types.Var {
if v != nil {
if typ := subst.typ(v.Type()); typ != v.Type() {
if v.IsField() {
return types.NewField(v.Pos(), v.Pkg(), v.Name(), typ, v.Embedded())
}
return types.NewVar(v.Pos(), v.Pkg(), v.Name(), typ)
}
}
return v
}
func (subst *subster) union(u *types.Union) *types.Union {
var out []*types.Term // nil => no updates
for i, n := 0, u.Len(); i < n; i++ {
t := u.Term(i)
r := subst.typ(t.Type())
if r != t.Type() && out == nil {
out = make([]*types.Term, n)
for j := 0; j < i; j++ {
out[j] = u.Term(j)
}
}
if out != nil {
out[i] = types.NewTerm(t.Tilde(), r)
}
}
if out != nil {
return types.NewUnion(out)
}
return u
}
func (subst *subster) interface_(iface *types.Interface) *types.Interface {
if iface == nil {
return nil
}
// methods for the interface. Initially nil if there is no known change needed.
// Signatures for the method where recv is nil. NewInterfaceType fills in the receivers.
var methods []*types.Func
initMethods := func(n int) { // copy first n explicit methods
methods = make([]*types.Func, iface.NumExplicitMethods())
for i := 0; i < n; i++ {
f := iface.ExplicitMethod(i)
norecv := changeRecv(f.Type().(*types.Signature), nil)
methods[i] = types.NewFunc(f.Pos(), f.Pkg(), f.Name(), norecv)
}
}
for i := 0; i < iface.NumExplicitMethods(); i++ {
f := iface.ExplicitMethod(i)
// On interfaces, we need to cycle break on anonymous interface types
// being in a cycle with their signatures being in cycles with their receivers
// that do not go through a Named.
norecv := changeRecv(f.Type().(*types.Signature), nil)
sig := subst.typ(norecv)
if sig != norecv && methods == nil {
initMethods(i)
}
if methods != nil {
methods[i] = types.NewFunc(f.Pos(), f.Pkg(), f.Name(), sig.(*types.Signature))
}
}
var embeds []types.Type
initEmbeds := func(n int) { // copy first n embedded types
embeds = make([]types.Type, iface.NumEmbeddeds())
for i := 0; i < n; i++ {
embeds[i] = iface.EmbeddedType(i)
}
}
for i := 0; i < iface.NumEmbeddeds(); i++ {
e := iface.EmbeddedType(i)
r := subst.typ(e)
if e != r && embeds == nil {
initEmbeds(i)
}
if embeds != nil {
embeds[i] = r
}
}
if methods == nil && embeds == nil {
return iface
}
if methods == nil {
initMethods(iface.NumExplicitMethods())
}
if embeds == nil {
initEmbeds(iface.NumEmbeddeds())
}
return types.NewInterfaceType(methods, embeds).Complete()
}
func (subst *subster) alias(t *aliases.Alias) types.Type {
// See subster.named. This follows the same strategy.
tparams := aliases.TypeParams(t)
targs := aliases.TypeArgs(t)
tname := t.Obj()
torigin := aliases.Origin(t)
if !declaredWithin(tname, subst.origin) {
// t is declared outside of the function origin. So t is a package level type alias.
if targs.Len() == 0 {
// No type arguments so no instantiation needed.
return t
}
// Instantiate with the substituted type arguments.
newTArgs := subst.typelist(targs)
return subst.instantiate(torigin, newTArgs)
}
if targs.Len() == 0 {
// t is declared within the function origin and has no type arguments.
//
// Example: This corresponds to A or B in F, but not A[int]:
//
// func F[T any]() {
// type A[S any] = struct{t T, s S}
// type B = T
// var x A[int]
// ...
// }
//
// This is somewhat different than *Named as *Alias cannot be created recursively.
// Copy and substitute type params.
var newTParams []*types.TypeParam
for i := 0; i < tparams.Len(); i++ {
cur := tparams.At(i)
cobj := cur.Obj()
cname := types.NewTypeName(cobj.Pos(), cobj.Pkg(), cobj.Name(), nil)
ntp := types.NewTypeParam(cname, nil)
subst.cache[cur] = ntp // See the comment "Note: Subtle" in subster.named.
newTParams = append(newTParams, ntp)
}
// Substitute rhs.
rhs := subst.typ(aliases.Rhs(t))
// Create the fresh alias.
//
// Until 1.27, the result of aliases.NewAlias(...).Type() cannot guarantee it is a *types.Alias.
// However, as t is an *alias.Alias and t is well-typed, then aliases must have been enabled.
// Follow this decision, and always enable aliases here.
const enabled = true
obj := aliases.NewAlias(enabled, tname.Pos(), tname.Pkg(), tname.Name(), rhs, newTParams)
// Substitute into all of the constraints after they are created.
for i, ntp := range newTParams {
bound := tparams.At(i).Constraint()
ntp.SetConstraint(subst.typ(bound))
}
return obj.Type()
}
// t is declared within the function origin and has type arguments.
//
// Example: This corresponds to A[int] in F. Cases A and B are handled above.
// func F[T any]() {
// type A[S any] = struct{t T, s S}
// type B = T
// var x A[int]
// ...
// }
subOrigin := subst.typ(torigin)
subTArgs := subst.typelist(targs)
return subst.instantiate(subOrigin, subTArgs)
}
func (subst *subster) named(t *types.Named) types.Type {
// A Named type is a user defined type.
// Ignoring generics, Named types are canonical: they are identical if
// and only if they have the same defining symbol.
// Generics complicate things, both if the type definition itself is
// parameterized, and if the type is defined within the scope of a
// parameterized function. In this case, two named types are identical if
// and only if their identifying symbols are identical, and all type
// arguments bindings in scope of the named type definition (including the
// type parameters of the definition itself) are equivalent.
//
// Notably:
// 1. For type definition type T[P1 any] struct{}, T[A] and T[B] are identical
// only if A and B are identical.
// 2. Inside the generic func Fn[m any]() any { type T struct{}; return T{} },
// the result of Fn[A] and Fn[B] have identical type if and only if A and
// B are identical.
// 3. Both 1 and 2 could apply, such as in
// func F[m any]() any { type T[x any] struct{}; return T{} }
//
// A subster replaces type parameters within a function scope, and therefore must
// also replace free type parameters in the definitions of local types.
//
// Note: There are some detailed notes sprinkled throughout that borrow from
// lambda calculus notation. These contain some over simplifying math.
//
// LC: One way to think about subster is that it is a way of evaluating
// ((λm. E) N) as E[m:=N].
// Each Named type t has an object *TypeName within a scope S that binds an
// underlying type expression U. U can refer to symbols within S (+ S's ancestors).
// Let x = t.TypeParams() and A = t.TypeArgs().
// Each Named type t is then either:
// U where len(x) == 0 && len(A) == 0
// λx. U where len(x) != 0 && len(A) == 0
// ((λx. U) A) where len(x) == len(A)
// In each case, we will evaluate t[m:=N].
tparams := t.TypeParams() // x
targs := t.TypeArgs() // A
if !declaredWithin(t.Obj(), subst.origin) {
// t is declared outside of Fn[m].
//
// In this case, we can skip substituting t.Underlying().
// The underlying type cannot refer to the type parameters.
//
// LC: Let free(E) be the set of free type parameters in an expression E.
// Then whenever m ∉ free(E), then E = E[m:=N].
// t ∉ Scope(fn) so therefore m ∉ free(U) and m ∩ x = ∅.
if targs.Len() == 0 {
// t has no type arguments. So it does not need to be instantiated.
//
// This is the normal case in real Go code, where t is not parameterized,
// declared at some package scope, and m is a TypeParam from a parameterized
// function F[m] or method.
//
// LC: m ∉ free(A) lets us conclude m ∉ free(t). So t=t[m:=N].
return t
}
// t is declared outside of Fn[m] and has type arguments.
// The type arguments may contain type parameters m so
// substitute the type arguments, and instantiate the substituted
// type arguments.
//
// LC: Evaluate this as ((λx. U) A') where A' = A[m := N].
newTArgs := subst.typelist(targs)
return subst.instantiate(t.Origin(), newTArgs)
}
// t is declared within Fn[m].
if targs.Len() == 0 { // no type arguments?
assert(t == t.Origin(), "local parameterized type abstraction must be an origin type")
// t has no type arguments.
// The underlying type of t may contain the function's type parameters,
// replace these, and create a new type.
//
// Subtle: We short circuit substitution and use a newly created type in
// subst, i.e. cache[t]=fresh, to preemptively replace t with fresh
// in recursive types during traversal. This both breaks infinite cycles
// and allows for constructing types with the replacement applied in
// subst.typ(U).
//
// A new copy of the Named and Typename (and constraints) per function
// instantiation matches the semantics of Go, which treats all function
// instantiations F[N] as having distinct local types.
//
// LC: x.Len()=0 can be thought of as a special case of λx. U.
// LC: Evaluate (λx. U)[m:=N] as (λx'. U') where U'=U[x:=x',m:=N].
tname := t.Obj()
obj := types.NewTypeName(tname.Pos(), tname.Pkg(), tname.Name(), nil)
fresh := types.NewNamed(obj, nil, nil)
var newTParams []*types.TypeParam
for i := 0; i < tparams.Len(); i++ {
cur := tparams.At(i)
cobj := cur.Obj()
cname := types.NewTypeName(cobj.Pos(), cobj.Pkg(), cobj.Name(), nil)
ntp := types.NewTypeParam(cname, nil)
subst.cache[cur] = ntp
newTParams = append(newTParams, ntp)
}
fresh.SetTypeParams(newTParams)
subst.cache[t] = fresh
subst.cache[fresh] = fresh
fresh.SetUnderlying(subst.typ(t.Underlying()))
// Substitute into all of the constraints after they are created.
for i, ntp := range newTParams {
bound := tparams.At(i).Constraint()
ntp.SetConstraint(subst.typ(bound))
}
return fresh
}
// t is defined within Fn[m] and t has type arguments (an instantiation).
// We reduce this to the two cases above:
// (1) substitute the function's type parameters into t.Origin().
// (2) substitute t's type arguments A and instantiate the updated t.Origin() with these.
//
// LC: Evaluate ((λx. U) A)[m:=N] as (t' A') where t' = (λx. U)[m:=N] and A'=A [m:=N]
subOrigin := subst.typ(t.Origin())
subTArgs := subst.typelist(targs)
return subst.instantiate(subOrigin, subTArgs)
}
func (subst *subster) instantiate(orig types.Type, targs []types.Type) types.Type {
i, err := types.Instantiate(subst.ctxt, orig, targs, false)
assert(err == nil, "failed to Instantiate named (Named or Alias) type")
if c, _ := subst.uniqueness.At(i).(types.Type); c != nil {
return c.(types.Type)
}
subst.uniqueness.Set(i, i)
return i
}
func (subst *subster) typelist(l *types.TypeList) []types.Type {
res := make([]types.Type, l.Len())
for i := 0; i < l.Len(); i++ {
res[i] = subst.typ(l.At(i))
}
return res
}
func (subst *subster) signature(t *types.Signature) types.Type {
tparams := t.TypeParams()
// We are choosing not to support tparams.Len() > 0 until a need has been observed in practice.
//
// There are some known usages for types.Types coming from types.{Eval,CheckExpr}.
// To support tparams.Len() > 0, we just need to do the following [psuedocode]:
// targs := {subst.replacements[tparams[i]]]}; Instantiate(ctxt, t, targs, false)
assert(tparams.Len() == 0, "Substituting types.Signatures with generic functions are currently unsupported.")
// Either:
// (1)non-generic function.
// no type params to substitute
// (2)generic method and recv needs to be substituted.
// Receivers can be either:
// named
// pointer to named
// interface
// nil
// interface is the problematic case. We need to cycle break there!
recv := subst.var_(t.Recv())
params := subst.tuple(t.Params())
results := subst.tuple(t.Results())
if recv != t.Recv() || params != t.Params() || results != t.Results() {
return types.NewSignatureType(recv, nil, nil, params, results, t.Variadic())
}
return t
}
// reaches returns true if a type t reaches any type t' s.t. c[t'] == true.
// It updates c to cache results.
//
// reaches is currently only part of the wellFormed debug logic, and
// in practice c is initially only type parameters. It is not currently
// relied on in production.
func reaches(t types.Type, c map[types.Type]bool) (res bool) {
if c, ok := c[t]; ok {
return c
}
// c is populated with temporary false entries as types are visited.
// This avoids repeat visits and break cycles.
c[t] = false
defer func() {
c[t] = res
}()
switch t := t.(type) {
case *types.TypeParam, *types.Basic:
return false
case *types.Array:
return reaches(t.Elem(), c)
case *types.Slice:
return reaches(t.Elem(), c)
case *types.Pointer:
return reaches(t.Elem(), c)
case *types.Tuple:
for i := 0; i < t.Len(); i++ {
if reaches(t.At(i).Type(), c) {
return true
}
}
case *types.Struct:
for i := 0; i < t.NumFields(); i++ {
if reaches(t.Field(i).Type(), c) {
return true
}
}
case *types.Map:
return reaches(t.Key(), c) || reaches(t.Elem(), c)
case *types.Chan:
return reaches(t.Elem(), c)
case *types.Signature:
if t.Recv() != nil && reaches(t.Recv().Type(), c) {
return true
}
return reaches(t.Params(), c) || reaches(t.Results(), c)
case *types.Union:
for i := 0; i < t.Len(); i++ {
if reaches(t.Term(i).Type(), c) {
return true
}
}
case *types.Interface:
for i := 0; i < t.NumEmbeddeds(); i++ {
if reaches(t.Embedded(i), c) {
return true
}
}
for i := 0; i < t.NumExplicitMethods(); i++ {
if reaches(t.ExplicitMethod(i).Type(), c) {
return true
}
}
case *types.Named, *aliases.Alias:
return reaches(t.Underlying(), c)
default:
panic("unreachable")
}
return false
}
|